Плоская система сходящихся сил. Плоская система произвольно расположенных сил Теоретическая механика Сопротивление материалов Минет в авто - "визитная карточка" девочек Кургана http://prostitutki-kurgan.info/uslugi/minet-v-avto/ оставит незабываемые впечатления Определение реакций опор Центр тяжести Скорости и ускорения точек вращающегося тела

Теоретическая механика Лекции и примеры решения задач

Плоская система сходящихся сил.

Определение равнодействующей

геометрическим способом

Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Уметь определять равнодействующую, решать задачи на рав­новесие в геометрической форме.

Плоская система сходящихся сил

Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Необходимо определить равнодействую­щую системы сходящихся сил (F1; F2; F3; …; Fn), n — число сил, входящих в систему.

По следствию из аксиом статики, все си­лы системы можно переместить вдоль линии действия, и все силы окажутся приложенными в одной точке.

Рис. 2.1

Равнодействующая сходящихся сил

Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 2.2).

Рис. 2.2

Используя свойства векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил (рис. 2.3). Вектор равнодействующей силы соединит начало первого вектора с концом последнего.

При графическом способе определения равнодействующей век­торы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится.

Рис. 2.3

Вектор равнодействующей направлен навстречу векторам сил-слагаемых. Такой способ получения равнодействующей называют геометрическим.

Замечание. При вычерчивании многоугольника обращать внимание на параллельность сторон многоугольника соответствую­щим векторам сил.

Основные понятия и аксиомы статики

Аксиомы статики

В результате обобщения человеческого опыта были установлены общие закономерности механического движения, выраженные в виде законов и теорем. Все теоремы и уравнения статики выводятся из нескольких исходных положений. Эти положения называют аксиомами статики.

Первая аксиома

Под действием уравновешенной системы сил абсолютно твердое тело или материальная точка находятся в равновесии или движутся равномерно и прямолинейно (закон инерции).

Следствие из второй и третьей аксиом

Силу, действующую на твердое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Сила F приложена в точке А. Требуется перенести ее в точку В. Используя третью аксиому, добавим в точке (F’; F”). Образуется уравновешенная по второй аксиоме система сил (F; F”). Убираем ее и получим в точке В силу F", равную заданной F.

Жесткий стержень

На схемах стержни изображают толстой сплошной линией (рис. 1.9).

Стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент наложенными на него связями.

Убираем стержень 1, в этом случае стержень 2 падает вниз. Следовательно, сила от стержня 1 (реакция) направлена вверх. Убираем стержень 2. В этом случае точка Л опускается вниз, отодвигаясь от стены. Следовательно, реакция стержня 2 направлена к стене.

2. Какие силы системы (рис. 1.14) можно убрать, не нарушая механического состояния тела?

Рис.1.14

3. Тела 1 и 2 (рис. 1.15) находятся в равновесии. Можно ли убрать действующие системы сил, если тела абсолютно твердые? Что изменится, если тела реальные, деформируемые?

Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.

При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.

Условие равновесия плоской системы сходящихся сил

При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Рис. 2.7

2. Из представленных силовых треугольников выберете треугольник, построенный для точки А (рис. 2.8, 2.9).

Рис. 2.8

Шар подвешен на нити и находится в равновесии. Обратить внимание на направление реакции от гладкой опоры и условие равновесия шара

Системой сил называют совокупность сил, действующих на тело. Если систему сил, действующих на тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения тела, то такие две системы называются эквивалентными. Если система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.
Теоретическая механика Балочные системы