Геометрия
Практикум
Математика
Лекции
Графика
Сопромат
Алгебра
Физика

Контрольная

Задачи
Типовой
На главную
Черчение
Механика
Курсовая
Электротехника

Баланс мощностей

Для проверки правильности результатов расчета электрической схемы составляется баланс электрических мощностей. В соответствии  с законом

сохранения энергии в любой отдельно взятой электрической цепи мощность, развиваемая источниками в этой цепи, равна мощности, расходуемой в приемниках энергии. При этом следует иметь в виду, что при определенных условиях некоторые источники, действующие в цепи, не генерируют, а, наоборот, потребляют энергию. Следовательно, суммарную мощность источников, действующих в цепи, находят в виде алгебраической суммы мощности отдельных источников. Со знаком “плюс” берется мощность источников, генерирующих энергию (рисунок 3.22, а, б), а со знаком “минус” – мощность источников, потребляющих энергию (рисунок 3.22, в, г). На рисунках буквой А обозначен активный двухполюсник, внутренняя схема которого представляет совокупность источников энергии и резисторов, соединенных между собой определенным образом.

Мощность источника напряжения равна произведению ЭДС E источника и проходящего по нему тока I (P = ЕI), а мощность источника тока определяется произведением напряжения UJ на его зажимах и генерируемого источником тока J (P = UJJ). На рисунке 3.22, а, б мощность источников берется с положительным знаком, а на рисунке 3.22, в, г – с отрицательным.

Таким образом, мощность источников, действующих в цепи, находят по формуле 

  (3.20) 

В резисторах электрическая энергия необратимо превращается в тепловую. Мощность, потребляемая всеми резисторами в цепи, равна сумме мощностей каждого резистора:

 Pнагр =   (3.21)

Относительную ошибку вычислений находят по формуле

 

  (3.22)

Составим баланс мощностей для примера 3.4. Найдем напряжение UJ на зажимах источника тока по второму закону Кирхгофа для контура b-c-d-b:

UJ = E5 – R5I5 + R3I3 = 118,325 В.

Из полученных в результате расчета значений токов следует, что энергию генерируют источники ЭДС E1, E4 и источник тока J, в то время как источник ЭДС E5 является ее потребителем. Таким образом, мощность, развиваемая источниками, 

 Pист = E1I1 + E4I4 – E5I5 +UJJ = 404,935 Вт.

Мощность, выделяемая в сопротивлениях резисторов (мощность нагрузки),

 

Pнагр =  404,92 Вт.

Относительная ошибка вычислений

Вывод: расчет токов схемы выполнен правильно, т. к. баланс мощностей выполняется.

В схеме можно предварительно произвести эквивалентные преобразования, позволяющие исключить из нее ветви с источниками токов и, следовательно, уменьшить число контуров.

В этом случае система контурных уравнений (3.19) может быть записана в матричной форме: 

  (3.23)

где ;

  – квадратная матрица сопротивлений электрической цепи порядка n;

  – матрица-столбец искомых контурных токов;

  – матрица-столбец контурных ЭДС.

Решение матричного уравнения (3.23) находим в следующей форме:

  . (3.24)

При расчете многоконтурных электрических цепей матричная форма записи позволяет использовать при решении системы уравнений ЭВМ.

Пример 3.5 Рассчитать токи  в схеме на рисунке 3.23 с параметрами E1 = 12 В, E5 = 8 В, J = 2 A, r01 = 1 Ом,  r05 = 1,2 Ом, R1 = 11 Ом, R2 = 8 Ом, R3 = 14 Ом, R4 = 5 Ом, R5 = 6,8 Ом, R6 = 6 Ом методом контурных токов. Построить потенциальную диаграмму для контура a-b-c-d-a.

Решение. Подключим источник тока J параллельно сопротивлениям R2 и R4 (рисунок 3.24, а), распределение токов в узлах a, b и c при этом останется прежним. Заменим параллельное соединение источников тока J и сопротивлений R2 и R4 эквивалентным последовательным соединением ЭДС Е2 = R2J = 16 В и Е4 = R4J = 10 В с соответствующими сопротивлениями R2 и R4 (рисунок 3.24, б).

В результате эквивалентных преобразований получим схему на рисунке 3.25. Токи в ветвях с сопротивлениями R2 и R4 этой схемы будут отличаться от токов в исходной схеме, поэтому обозначим их и .

Выберем независимые контуры и направим в них контурные токи I11, I22 и I33. Запишем систему уравнений относительно неизвестных контурных токов в матричной форме и найдем ее решение.

  ,

где R11 = R1 + r01 + R2 + R3 = 34 Ом; 

 R22 = R2 + R4 + r05 + R5 = 21 Ом;

 R33 = R3 + R6 + r05 + R5 = 28 Ом;

 R12 = R21 = – R2 = – 8 Ом;

  R13 = R31 = R3 = 14 Ом; 

 R23 = R32 = r05 + R5 = 8 Ом;

 E11 = E1 – E2 = – 4 В;

  E22 = E2 + E4 – E5 = 18 В;

 E33 = – E5 = – 8 В.

Решение системы линейных алгебраических уравнений выполним методом Крамера. Найдем определитель матрицы сопротивлений

 

1,012∙104 Ом3,

а также следующие определители:

 

 

Находим контурные токи:

  

Токи ветвей схемы 3.25:

I1 = I11 = 0,674 A;  = – I11 + I22 = 0,842 A; I3 = – I11 – I33 = 0,382 A; 

 = I22 = 1,516 A; I5 = – I22 – I33 = – 0,46 A; I6 = – I33 = 1,056 A. 

Вернемся к исходной схеме и определим токи во второй и четвертой ветвях по первому закону Кирхгофа:

I2 = I3 – I5 – J = – 1,158 А; I4 = I1 + I2 = – 0,484 А.

 

Проверим правильность результатов расчета по балансу электрических мощностей. Найдем напряжение UJ на зажимах источника тока:

UJ = – R2I2 – R4I4 = 11,684 В.

Истинные направления токов I2 и I4 противоположны предварительно выбранным.

Из проведенных расчетов следует, что источник ЭДС E1 и источник тока J функционируют в режиме генерирования энергии, в то время как источник ЭДС E5 ее потребляет.

Мощность источников Pист = E1I1 – E5I5 + UJJ = 27,776 Вт.

Мощность нагрузки

Pнагр =27,777 Вт.

Построим потенциальную диаграмму, т. е. распределение потенциалов узлов, в том числе и устранимых m и n вдоль контура a-b-c-d-a (рисунок 3.26) в зависимости от сопротивлений участков, входящих в этот контур. Выделим из схемы 3.23 этот контур и укажем действительные направления токов в ветвях. Ток на любом участке схемы определяется не абсолютными значениями потенциалов точек, к которым этот участок присоединен, а их разностью. Следовательно, потенциал одной из точек схемы можно принять равным нулю. Примем, например, потенциал узла а равным нулю (φа = 0) и найдем потенциалы остальных точек контура:

φb = –R2I2 = – 9,264 В; φn = φb + R5I5 = – 6,136 В; φc = φn + E5 + r05I5 = 2,416 В;

φd = φc–R6I6 = – 3,92 В; φm= φd + E1– r01I1 = 7,406 В; φa = φm – R1I1 = – 0,008 В.

Потенциальная диаграмма представлена на рисунке 3.27.

Ядерные реакторы

AutoCAD
Электротехника
Сети
Искусство
Интегралы
Математика