Реакторы атомных станций. Проектирование и эксплуатация

Атомная энергетика
Ядерные реакторы
Тепловые контуры атомных станций
Реактор ВВЭР
Кипящие реакторы
Реактор РБМК
Реакторная установка МКЭР -1500
Реакторы на естественном уране
Газоохлаждаемые реакторы
Реакторы HTGR
Атомные электростанции с натриевым
теплоносителем
АЭС с реактором БН-350

БРЕСТ: быстрый реактор брест со
свинцовым теплоносителем

Основы ядерной физики
Строение атомного ядра
ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР
И ДЕФЕКТ МАСС
Ядерная реакция
Закон радиоактивного распада
Цепная ядерная реакция
Термоядерный синтез
Реакторы на быстрых нейтрона
Элементарная частица
Позитрон. Аннигиляция
Использование атомной энергетики
для решения проблем дефицита пресной воды
Ядерное опреснение
Варианты  плавучего энергоблока и
опреснительных установок
Схема процесса многостадийной
флеш-дистилляции для опреснения воды
Принципиальная гидравлическая схема
энергоопреснительного комплекса
Опыт использования опреснительных установок
в России и регионах мира
Проектирование и строительство
атомных энергоблоков
Работы по подготовке технологических решений
объектов атомной энергетики
Состав разделов проектной документации
Разделы проектной документации
Состав проектной документации
Особенности проектирования и конструкций
Проектирование линейных объектов
Техническое обследование зданий
Экспертиза проектной документации
Особенности компоновки АЭС на примере
проектных решений АЭС с ВВЭР-1200
Основным режимом работы АЭС является
работа в базовом режиме на 100 % мощности
Корпус реактора
Привод системы управления и защиты
Компоновка реакторного контура
Паровая турбина
Генеральный план
Здания и сооружения ядерного острова
Концепция безопасности
Радиационная и ядерная безопасность
производства
Социально-экономический аспект
обеспечения безопасности
Радиационная безопасность человека
Государственное нормирование в области
обеспечения радиационной безопасности
Обеспечение защиты населения

АЭС с реактором БН-350 в г. Актау (Шевченко) работала с 1973 по 2000гг. Остановлена по политическим причинам.

Реакторная установка имеет 6 петель охлаждения, в состав каждой из которых входят расположенные вне реактора отсекающие входная и выходная задвижки, циркуляционные натриевые насосы первого и промежуточного контуров, промежуточный теплообменник и парогенераторная установка в составе двух испарителей и одного пароперегревателя.

Таблица 5

Основные проектные показатели реакторов БН-350 и БН-600

Показатель

БН-350

БН-600

Электрическая мощность

Эквивалентная

350

600

непосредственная

150

600

Температура натрия на входе в реактор, ºС

300

380

Температура натрия на выходе из реактора, ºС

500

550

Давление пара на выходе из парогенератора, МПа

5

14

Температура пара на выходе из парогенератора, ºС

435

505

Одно из преимуществ жидкометаллического теплоносителя - возможность использования паротурбинных установок обычной теплоэнергетики, так как в связи с высокими температурами теплоносителя давление и температура пара перед турбиной могут быть существенно выше, чем для турбин на АЭС с водяным теплоносителем. С этой точки зрения параметры пара для АЭС с БН-350 могли быть выбраны существенно более высокие. Однако сооружение этой АЭС было связано с конкретной технологической задачей получения больших количеств опресненной морской воды для промышленных и бытовых нужд, а также для теплоснабжения г. Шевченко (современный Актау). Таким образом, АЭС с БН-350 является трехцелевой.

Топливные сборки активной зоны реактора БН-350 и зоны воспроизводства помещены в напорном коллекторе, смонтированном на напорной камере корпуса реактора. Активная зона состоит из топливных сборок с ядерным топливом – диоксидом урана значительного обогащения. По торцам и периметру она окружена экраном – зоной воспроизводства из диоксида обедненного урана. Торцевой экран смонтирован в сборках активной зоны, боковой экран образован топливными сборками с твэлами зоны воспроизводства. Корпус реактора представляет собой сосуд переменного диаметра (в наиболее широком месте – 6 м) из нержавеющей стали. Нижняя часть корпуса образует напорную камеру, в которой по трубопроводам поступает натрий от насосов. Протекая снизу вверх через активную зону и зону воспроизводства, натрий нагревается и через верхнюю смесительную камеру корпуса по трубопроводам направляется в теплообменники. Для предотвращения утечки натрия при разгерметизации основной корпус заключен в страховочный кожух. Внутренняя поверхность корпуса и выходные патрубки имеют экраны, снижающие температурные напряжения при быстром изменении температуры теплоносителя. Охлаждение корпуса обеспечивается «холодным» натрием, протекающим из напорной камеры в зазоре между стенками корпуса и тепловым экраном. В качестве материала биологической защиты вне реактора использованы железорудный концентрат, графит, сталь, бетон.

Топливные сборки загружают и выгружают комплексом механизмов: механизмом перегрузки, установленным на малой поворотной пробке и переставляющим ТВС внутри реактора; элеваторами загрузки-выгрузки, транспортирующими топливные сборки из реактора в перегрузочный бокс и обратно; механизмом передачи топливных сборок, расположенном в герметичном боксе и передающим отработанные топливные сборки из реактора во внешнее хранилище и свежие – из хранилища в реактор.

АЭС с реактором БН-600

Серийные паровые турбины обычной теплоэнергетики как высокого, так и сверхвысокого давления рассчитаны на начальный и промежуточный перегрев пара. Реакторы с натриевым теплоносителем предоставляют возможность использования таких турбин, которая реализована на третьем блоке Белоярской АЭС, работающем с 1980 г. с реактором БН-600.

Реактор (по сравнению с БН-350) имеет большую мощность, и что особенно важно, температура натрия после реактора и промежуточного натриевого теплообменника выше. Это позволило существенно увеличить температуру перегретого пара.

Компоновка реактора принята интегральная (бакового типа). Активная зона, насосы, промежуточные теплообменники и биологическая защита размещены совместно в корпусе реактора. Активная зона и зона воспроизводства смонтированы в напорной камере, где расход теплоносителя распределяется по топливным сборкам соответственно их тепловыделению.

Для АЭС с БН-600 применены серийные турбины мощностью 200 МВт с давлением пара перед турбиной 13 МПа. Однако присущие этой турбине температуры начального перегрева пара перед турбиной и промежуточная температура перегрева 540ºС не могли быть достигнуты из-за недостаточной температуры натрия после промежуточного теплообменника (520ºС). В связи с этим для турбин установки БН-600 и начальный, и промежуточный перегрев пара составляет 505ºС.

Развитие ядерной индустрии в СССР