Контрольная по математике. Примеры решения задач

Контрольная по математике
Построение графика функции
Найти частные производные функции
Сложная функция
Дифференциальные уравнения
Написать первые три члена ряда
Повторные независимые испытания
Элементы линейного программирования
Дифференциальные уравнения первого порядка
Найти общее решение дифференциального уравнения
Однородные уравнения
Уравнения, приводящиеся к однородным
Линейные уравнения
Метод Лагранжа
Для решения уравнения Бернулли
Уравнения в полных дифференциалах
Уравнения вида y = f(y’) и x = f(y’).
При решении дифференциальных уравнений
Решить дифференциальное уравнение
Дифференциальные уравнения
Уравнения, допускающие понижение порядка
Уравнения, не содержащие явно независимой переменной
Линейные дифференциальные уравнения высших порядков
Уравнения с правой частью специального вида
Общее решение неоднородного дифференциального уравнения
Разностные (рекуррентные) уравнения
Разностные операторы
Алгебраическое уравнение
Теперь рассмотрим решение конкретных примеров
Доказать сходимость ряда
Найти область сходимости ряда
Уравнения математической физики
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Вычисление пределов
Классификация точек разрыва
Найти производную функции
Производная по направлению и градиент
Исследование функций
Наибольшее и наименьшее значение функции
Провести полное исследование и построить график функции
Понятие об условном экстремуме функции двух переменных
Интегрирование по частям

Производная по направлению и градиент. Пусть  — функция двух переменных, определенная в некоторой области D, M(x,y) – произвольная точка этой области,  – некоторое направление (вектор, соединяющий

Рис.1

начало координат с точкой (a,b) и передвинутый параллельным переносом из начала координат в точку M). Через a и b обозначим углы, образованные вектором направления с положительными направлениями осей OX и OY.

Так как (см. рис. 1) , то справедливы формулы

. (3.13)

При этом  и  называются «направляющими косинусами».:

Производная функции  по направлению  в точке M задает скорость изменения функции в этом направлении и может быть найдена по формуле

 . (3.14)

Градиентом функции  в точке M называют вектор с координатами, равными значениям частных производных первого порядка в этой точке:

 . (3.15)

Он определяет направление наискорейшего возрастания функции, а его величина, которую находят по формуле

 , (3.16)

совпадает с максимальной скоростью возрастания функции в данной точке.

Пример 3.7. Пусть . Найти градиент функции в точке M(3;1), величину градиента функции в этой точке и производную функции в той же точке по направлению .

Решение. Предварительно находим частные производные функции первого порядка и их значения в заданной точке:

Теперь воспользуемся формулами (3.15) и (3.16):

.

Далее, , поэтому в силу (3.13) , и в силу (3.14):

.

Дифференциальные уравнения