Контрольная по математике. Примеры решения задач

Лекции
Физика

Контрольная

На главную
Электротехника

Общее решение неоднородного дифференциального уравнения:

 Рассмотрим примеры применения описанных методов.

 Пример. Решить уравнение

Составим характеристическое уравнение для соответствующего линейного однородного дифференциального уравнения:

 Общее решение однородного уравнения:

Теперь найдем частное решение неоднородного уравнения в виде:

Воспользуемся методом неопределенных коэффициентов.

Подставляя в исходное уравнение, получаем:

Частное решение имеет вид:

Общее решение линейного неоднородного уравнения:

 Пример. Решить уравнение 

Характеристическое уравнение:

Общее решение однородного уравнения:

Частное решение неоднородного уравнения: .

Находим производные и подставляем их в исходное неоднородное уравнение:

Получаем общее решение неоднородного дифференциального уравнения:

Нормальные системы обыкновенных дифференциальных уравнений.

 Определение. Совокупность соотношений вида:

где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.

 Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.

 Такая система имеет вид:

  (1)

 Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.

 Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции   …  непрерывны и имеют непрерывные частные производные по , то для любой точки  этой области существует единственное решение

системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям

 Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество.

Ядерные реакторы

Сети