Контрольная по математике. Примеры решения задач

Контрольная по математике
Построение графика функции
Найти частные производные функции
Сложная функция
Дифференциальные уравнения
Написать первые три члена ряда
Повторные независимые испытания
Элементы линейного программирования
Дифференциальные уравнения первого порядка
Найти общее решение дифференциального уравнения
Однородные уравнения
Уравнения, приводящиеся к однородным
Линейные уравнения
Метод Лагранжа
Для решения уравнения Бернулли
Уравнения в полных дифференциалах
Уравнения вида y = f(y’) и x = f(y’).
При решении дифференциальных уравнений
Решить дифференциальное уравнение
Дифференциальные уравнения
Уравнения, допускающие понижение порядка
Уравнения, не содержащие явно независимой переменной
Линейные дифференциальные уравнения высших порядков
Уравнения с правой частью специального вида
Общее решение неоднородного дифференциального уравнения
Разностные (рекуррентные) уравнения
Разностные операторы
Алгебраическое уравнение
Теперь рассмотрим решение конкретных примеров
Доказать сходимость ряда
Найти область сходимости ряда
Уравнения математической физики
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Вычисление пределов
Классификация точек разрыва
Найти производную функции
Производная по направлению и градиент
Исследование функций
Наибольшее и наименьшее значение функции
Провести полное исследование и построить график функции
Понятие об условном экстремуме функции двух переменных
Интегрирование по частям

Уравнения вида y = f(y’) и x = f(y’).

 Решение уравнений, не содержащих в одном случае аргумента х, а в другом – функции у, ищем в параметрической форме, принимая за параметр производную неизвестной функции.

Для уравнения первого типа получаем: 

Делая замену, получаем:

В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными.

 Общий интеграл в параметрической форме представляется системой уравнений:

Исключив из этой системы параметр р, получим общий интеграл и не в параметрической форме.

 Для дифференциального уравнения вида x = f(y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:

 Пример. Решить уравнение с заданными начальными условиями.

Это линейное неоднородное дифференциальное уравнение первого порядка.

Решим соответствующее ему однородное уравнение.

Для неоднородного уравнения общее решение имеет вид:

Дифференцируя, получаем:

Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение:

Итого, общее решение:

C учетом начального условия определяем постоянный коэффициент C.

Окончательно получаем:

Для проверки подставим полученный результат в исходное дифференциальное уравнение:  верно

Ниже показан график интегральной кривой уравнения.

 

Пример. Найти общий интеграл уравнения .

Это уравнение с разделяющимися переменными.

Общий интеграл имеет вид:

Построим интегральные кривые дифференциального уравнения при различных значениях С.

 С = - 0,5 С = -0,02 С = -1 С = -2

 


 С = 0,02 С = 0,5 С = 1 С = 2

 Пример. Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.

Это уравнение с разделяющимися переменными.

Общее решение имеет вид:

Найдем частное решение при заданном начальном условии у(0) = 0.

Окончательно получаем:

 Пример. Решить предыдущий пример другим способом.

 Действительно, уравнение  может быть рассмотрено как линейное неоднородное дифференциальное уравнение.

 Решим соответствующее ему линейное однородное уравнение.

Решение неоднородного уравнения будет иметь вид:

Тогда

Подставляя в исходное уравнение, получаем:

Итого  

С учетом начального условия у(0) = 0 получаем

Как видно результаты, полученные при решении данного дифференциального уравнения различными способами, совпадают.

Одним из аналитических методов приближенного решения дифференциальных уравнений является метод Пикара.

Построить последовательность пикаровских приближений решения дифференциального уравнения , удовлетворяющее начальному условию .

Геометрический смысл метода Эйлера

Дифференциальные уравнения