Контрольная по математике. Примеры решения задач

Контрольная по математике
Построение графика функции
Найти частные производные функции
Сложная функция
Дифференциальные уравнения
Написать первые три члена ряда
Повторные независимые испытания
Элементы линейного программирования
Дифференциальные уравнения первого порядка
Найти общее решение дифференциального уравнения
Однородные уравнения
Уравнения, приводящиеся к однородным
Линейные уравнения
Метод Лагранжа
Для решения уравнения Бернулли
Уравнения в полных дифференциалах
Уравнения вида y = f(y’) и x = f(y’).
При решении дифференциальных уравнений
Решить дифференциальное уравнение
Дифференциальные уравнения
Уравнения, допускающие понижение порядка
Уравнения, не содержащие явно независимой переменной
Линейные дифференциальные уравнения высших порядков
Уравнения с правой частью специального вида
Общее решение неоднородного дифференциального уравнения
Разностные (рекуррентные) уравнения
Разностные операторы
Алгебраическое уравнение
Теперь рассмотрим решение конкретных примеров
Доказать сходимость ряда
Найти область сходимости ряда
Уравнения математической физики
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Вычисление пределов
Классификация точек разрыва
Найти производную функции
Производная по направлению и градиент
Исследование функций
Наибольшее и наименьшее значение функции
Провести полное исследование и построить график функции
Понятие об условном экстремуме функции двух переменных
Интегрирование по частям

Уравнения в полных дифференциалах (тотальные).

 Интегрирование такого уравнения сводится к нахождению функции u, после чего решение легко находится в виде:

 Таким образом, для решения надо определить:

1) в каком случае левая часть уравнения представляет собой полный дифференциал функции u;

2) как найти эту функцию.

Если дифференциальная форма является полным дифференциалом некоторой функции u, то можно записать:

Т.е.

Найдем смешанные производные второго порядка, продифференцировав первое уравнение по у, а второе – по х:

Приравнивая левые части уравнений, получаем необходимое и достаточное условие того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется условием тотальности.

 Теперь рассмотрим вопрос о нахождении собственно функции u.

Проинтегрируем равенство :

Вследствие интегрирования получаем не постоянную величину С, а некоторую функцию С(у), т.к. при интегрировании переменная у полагается постоянным параметром.

 Определим функцию С(у).

Продифференцируем полученное равенство по у.

Откуда получаем:

Для нахождения функции С(у) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от х. Это условие будет выполнено, если производная этой функции по х равна нулю.

Теперь определяем функцию С(у):

Подставляя этот результат в выражение для функции u, получаем:

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

 Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.

 Пример. Решить уравнение

Проверим условие тотальности:

 

Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.

Определим функцию u.

;

Итого,

Находим общий интеграл исходного дифференциального уравнения:

 

Задача Дирихле для круга

Найти стационарное распределение температуры на тонкой однородной круглой пластине радиусом R, верхняя половина которой поддерживается при температуре 1°, а нижняя – при температуре 0°.

Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиусом R

Дифференциальные уравнения