Контрольная по математике. Примеры решения задач

Контрольная по математике
Построение графика функции
Найти частные производные функции
Сложная функция
Дифференциальные уравнения
Написать первые три члена ряда
Повторные независимые испытания
Элементы линейного программирования
Дифференциальные уравнения первого порядка
Найти общее решение дифференциального уравнения
Однородные уравнения
Уравнения, приводящиеся к однородным
Линейные уравнения
Метод Лагранжа
Для решения уравнения Бернулли
Уравнения в полных дифференциалах
Уравнения вида y = f(y’) и x = f(y’).
При решении дифференциальных уравнений
Решить дифференциальное уравнение
Дифференциальные уравнения
Уравнения, допускающие понижение порядка
Уравнения, не содержащие явно независимой переменной
Линейные дифференциальные уравнения высших порядков
Уравнения с правой частью специального вида
Общее решение неоднородного дифференциального уравнения
Разностные (рекуррентные) уравнения
Разностные операторы
Алгебраическое уравнение
Теперь рассмотрим решение конкретных примеров
Доказать сходимость ряда
Найти область сходимости ряда
Уравнения математической физики
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Вычисление пределов
Классификация точек разрыва
Найти производную функции
Производная по направлению и градиент
Исследование функций
Наибольшее и наименьшее значение функции
Провести полное исследование и построить график функции
Понятие об условном экстремуме функции двух переменных
Интегрирование по частям

Линейные уравнения.

 Рассмотрим методы нахождения общего решения линейного однородного дифференциального уравнения первого порядка вида

.

 Для этого типа дифференциальных уравнений разделение переменных не представляет сложностей.

 Общее решение: 

 Линейные неоднородные дифференциальные уравнения.

 Для интегрирования линейных неоднородных уравнений (Q(x)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.

Метод Бернулли.

 Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций .

 При этом очевидно, что  - дифференцирование по частям.

 Подставляя в исходное уравнение, получаем:

 Далее следует важное замечание – т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

 Например, функция  может быть представлена как

 и т.п.

 Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение .

 Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

 Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение  с учетом того, что выражение, стоящее в скобках, равно нулю.

 Интегрируя, можем найти функцию v:

;

 Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию.

 Подставляя полученные значения, получаем:

 Окончательно получаем формулу:

, С2 - произвольный коэффициент.

Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.

Уравнения параболического типа

Решение первой краевой задачи методом Фурье

Линейные уравнения первого порядка. Уравнение Бернулли Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и ее производной

Общее решение уравнения теплопроводности

Дифференциальные уравнения