Контрольная по математике. Примеры решения задач

Лекции
Физика

Контрольная

На главную
Электротехника

Однородные уравнения.

Пример. Является ли однородной функция 

Таким образом, функция f(x, y) является однородной 3- го порядка.

 Определение. Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

 Любое уравнение вида  является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.

 Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

 Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:

 Правая часть полученного равенства зависит фактически только от одного аргумента , т.е. 

Исходное дифференциальное уравнение таким образом можно записать в виде:

Далее заменяем y = ux, .

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.

 Пример. Решить уравнение .

Введем вспомогательную функцию u.

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее .

Подставляем в исходное уравнение:

Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:

В учебном пособии приводятся способы нахождения точных решений различных типов дифференциальных уравнений с частными производными второго порядка и методы приближенных решений обыкновенных дифференциальных уравнений и уравнений с частными производными. Каждый раздел пособия содержит теоретическое описание метода, образцы решения задач и набор задач для самостоятельного решения. Даются три типовых расчета: по методам решений дифференциальных уравнений с частными производными, а также по приближенным и вариационным методам. Теоретические выкладки снабжены практическими примерами. 

Вывод уравнения колебания струны В математической физике под струной понимают гибкую упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длиной l в начальный момент направлена по отрезку оси Ox от 0 до l.

Задача Коши Найти решение уравнения (2) для бесконечной области  удовлетворяющее в области  начальным условиям (3), (4). Граничные условия отсутствуют.

Ядерные реакторы

Сети