Контрольная по математике. Примеры решения задач

Контрольная по математике
Построение графика функции
Найти частные производные функции
Сложная функция
Дифференциальные уравнения
Написать первые три члена ряда
Повторные независимые испытания
Элементы линейного программирования
Дифференциальные уравнения первого порядка
Найти общее решение дифференциального уравнения
Однородные уравнения
Уравнения, приводящиеся к однородным
Линейные уравнения
Метод Лагранжа
Для решения уравнения Бернулли
Уравнения в полных дифференциалах
Уравнения вида y = f(y’) и x = f(y’).
При решении дифференциальных уравнений
Решить дифференциальное уравнение
Дифференциальные уравнения
Уравнения, допускающие понижение порядка
Уравнения, не содержащие явно независимой переменной
Линейные дифференциальные уравнения высших порядков
Уравнения с правой частью специального вида
Общее решение неоднородного дифференциального уравнения
Разностные (рекуррентные) уравнения
Разностные операторы
Алгебраическое уравнение
Теперь рассмотрим решение конкретных примеров
Доказать сходимость ряда
Найти область сходимости ряда
Уравнения математической физики
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Вычисление пределов
Классификация точек разрыва
Найти производную функции
Производная по направлению и градиент
Исследование функций
Наибольшее и наименьшее значение функции
Провести полное исследование и построить график функции
Понятие об условном экстремуме функции двух переменных
Интегрирование по частям

Однородные уравнения.

Пример. Является ли однородной функция 

Таким образом, функция f(x, y) является однородной 3- го порядка.

 Определение. Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

 Любое уравнение вида  является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.

 Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

 Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:

 Правая часть полученного равенства зависит фактически только от одного аргумента , т.е. 

Исходное дифференциальное уравнение таким образом можно записать в виде:

Далее заменяем y = ux, .

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.

 Пример. Решить уравнение .

Введем вспомогательную функцию u.

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее .

Подставляем в исходное уравнение:

Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:

В учебном пособии приводятся способы нахождения точных решений различных типов дифференциальных уравнений с частными производными второго порядка и методы приближенных решений обыкновенных дифференциальных уравнений и уравнений с частными производными. Каждый раздел пособия содержит теоретическое описание метода, образцы решения задач и набор задач для самостоятельного решения. Даются три типовых расчета: по методам решений дифференциальных уравнений с частными производными, а также по приближенным и вариационным методам. Теоретические выкладки снабжены практическими примерами. 

Вывод уравнения колебания струны В математической физике под струной понимают гибкую упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длиной l в начальный момент направлена по отрезку оси Ox от 0 до l.

Задача Коши Найти решение уравнения (2) для бесконечной области  удовлетворяющее в области  начальным условиям (3), (4). Граничные условия отсутствуют.

Дифференциальные уравнения