Схемы выпрямителей, фильтров. Расчет устройств

Начертательная геометрия
и инженерная графика
Начертательная геометрия
Задание по инженерной графике
Геометрические характеристики
плоских сечений
Построение геометрических фигур
Контрольная работа по
инженерной графике
Практикум по черчению
Оформление чертежей
Построения черчежа
Позиционные задачи

Основы машиностроительного черчения

Черчение Практикум по решению задач
Построение касательной
История искусства
Архитектура и скульптура Западной Европы
Живопись Франции
Барбизонская школа
Эдуард Мане
Импрессионизм
Неоимпрессионизм
Постимпрессионизм
Живопись Германии
Живопись Англии
Галерея Тейт в Лондоне
Искусство России
Архитектура и скульптура
Живопись
Иван Айвазовский
Василий Поленов
Василий Суриков
Исаак Левитан

Государственная Третьяковская галерея

Сопромат
Сопротивление материалов
Задачи по сопротивлению материалов
Теоретическая механика
Лабораторные работы по
сопротивлению материалов
Контрольная работа по сопромату
Лекции по черчению,
начертательной геометрии
Вычерчивание контуров деталей
Аксонометрическая проекция
Тени цилиндра
Конические сечения
Математика решение задач
Вычисление объемов с помощью
тройных интегралов
Основы векторной алгебры
Аналитическая геометрия
Решение типового варианта контрольной работы
Курсовая по математике
Вычисления интегралов
Интегралы при решении задач
Физика
Лекции и конспекты
Физика примеры решения задач
Механика
Термодинамика
Молекулярная физика
Электростатика и постоянный ток
Электромагнетизм
Электромагнитная индукция
Теория электромагнитного поля
Геометрическая оптика
Радиоактивность. Элементы физики ядра
Электротехника
Схемы выпрямителей, фильтров
MATLAB приложение Simulink
Курсовая по ТОЭ
Примеры выполнения заданий
Курс лекций по ТОЭ и типовые задания
Линейные электрические цепи
Резонанс в электрических цепях
Несинусоидальные токи
Расчет переходных процессов
Теория нелинейных цепей
Переходные процессы в нелинейных цепях
Лабораторные работы и расчеты по ТОЭ
Исследование переходных процессов
Моделирование электрических цепей
Задание на курсовую работу
Расчет переходного процесса в цепях
первого порядка
Использование программы Mathcad
Исследование  трёхфазных цепей
Исследование сложной электрической цепи постоянного тока
Исследование  трёхфазных цепей при соединении сопротивлений нагрузки
в треугольник
Информатика
Школьный учебник по информатике
Графический пакет AutoCAD
Adobe Illustrator
Инструменты
Векторные фильтры
Цветовые фильтры
Работа с текстом и шрифтом
Информационная графика
Учебник по Microsoft Internet Explorer
Основы безопасной работы с ресурсами сети
Microsoft Outlook
Компьютерные сети
Вычислительные сети
Основные проблемы построения сетей
Понятие «открытая система» и проблемы стандартизации
Локальные и глобальные сети
Сети отделов, кампусов и корпораций
Требования, предъявляемые к современным вычислительным сетям
Основы передачи дискретных данных
Методы передачи дискретных данных на физическом уровне
Методы передачи данных канального уровня
Методы коммутации
Базовые технологии локальных сетей
Протокол LLC уровня управления логическим каналом (802.2)
Технология Ethernet (802.3)
Технология Token Ring (802.5)
Технология FDDI
Fast Ethernet и 100VG - AnyLAN как развитие технологии Ethernet
Высокоскоростная технология Gigabit Ethernet
Построение локальных сетей по стандартам физического и канального уровней
Концентраторы и сетевые адаптеры
Логическая структуризация сети с помощью мостов и коммутаторов
Техническая реализация и дополнительные функции коммутаторов
Сетевой уровень как средство построения больших сетей
Адресация в IP-сетях
Протокол IP
Протоколы маршрутизации в IP-сетях
Средства построения составных сетей стека Novell
Маршрутизаторы
Глобальные сети
Глобальные связи на основе выделенных линий
Глобальные связи на основе сетей с коммутацией каналов
Компьютерные глобальные сети с коммутацией пакетов
Удаленный доступ
Средства анализа и управления сетями
Мониторинг и анализ локальных сетей
Ядерная индустрия
История ядерной индустрии
Урановый проект
Попытка создать атомное оружие в Германии
США применила атомные бомбы
Атомная индустрия в Великобритании
Проектирование ядерного реактора Франция
Развитие ядерной индустрии в СССР
Урановый проект СССР в годы войны
Проектирование атомной подводной лодки
Первая в мире атомная электростанция
Атомный ледоход"Ленин"
Путешествие советской атомной подводной лодки на Северный полюс
Атомные двигатели для космоса
Курчатовский институт
Ядерные реакторы
Компоновка реакторного контура
Реактор ВВЭР
Реактор РБМК
Реакторная установка МКЭР -1500
Газоохлаждаемые реакторы
Атомные электростанции с натриевым теплоносителем
АЭС с реактором БН-350
Цепная ядерная реакция
Термоядерный синтез
Реакторы на быстрых нейтронах
Варианты  плавучего энергоблока и опреснительных установок
Радиационная и ядерная безопасность
Обеспечение защиты населения
 

Структурная схема и классификация выпрямителей Выпрямитель можно представить в виде структурной схемы, в которую входят: силовой трансформатор (СТ), вентильный блок (ВБ), фильтрующее устройство (ФУ), цепь нагрузки (Н).

Основные схемы выпрямления Однофазную, однополупериодную схему обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризуется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения.

Двухполупериодная схема со средней точкой (схема Миткевича) Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Мостовая схема схема Греца Однофазная мостовая схема характеризуется высоким коэффициентом использования трансформатора по мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме. Достоинства – меньшее обратное напряжение на диодах в 2 раза, меньшие габариты, выше коэффициент использования трансформатора, чем в схеме со средней точкой. Недостаток – на диодах падение напряжения в 2 раза больше.

Трехфазная нулевая (схема звезда-звезда) В схему трехфазного выпрямителя со средней (нулевой) точкой входит трансформатор со вторичными обмотками, соединенными звездой. Выводы вторичных обмоток связаны с анодами трех вентилей. Нагрузка подключается к общей точке соединения катодов вентилей и среднему выводу вторичных обмоток

Трехфазная мостовая схема (схема Ларионова) Трехфазная мостовая схема обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема приме­няется в широком диапазоне выпрямленных напряжений и мощностей.

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке

Выпрямительные диоды Выпрямительные свойства полупроводниковых диодов характеризуются рядом параметров, определяющих токи и напряжения в прямом и обратном направлениях. Эти параметры определяются вольт-амперной характеристикой (ВАХ) диода

Выбор вентилей выпрямительного устройства

Классификация сглаживающих фильтров

Коэффициенты фильтрации и сглаживания фильтра Действие сглаживающего фильтра можно характеризовать коэффициентом фильтрации , который определяется, как отношение значений пульсации на входе и выходе фильтра:

Расчет Г-образного индуктивно-емкостного фильтра  Сглаживание пульсаций выпрямленного напряжения осуществляется более эффективно при помощи фильтров, составленных из повторяющихся Г-образных или П-образных звеньев

Особенности применения электролитических конденсаторов в выпрямительных устройствах При проектировании устройств электропитания схема фильтра и его параметры определяются исходя из требования сглаживания пульсаций выходного напряжения выпрямителя. На практике в фильтрах выпрямительных устройств наибольшее применение нашли электролитические конденсаторы (ЭК).

Модуль полного комплексного сопротивления реального конденсатора, исходя из схемы замещения (без учета тока утечки), на частоте f переменного напряжения (тока)

Производители выпускают серии ЭК с различными сроками службы

Методики анализа и расчета выпрямителей Анализ работы выпрямителя гармонического напряжения при нагрузке, начинающейся с емкостного элемента

Важно отметить заметную зависимость выходного напряжения выпрямителя от емкости выходного конденсатора. При увеличении емкости С спадание напряжения из-за разрядки конденсатора замедляется и угол открывания вентиля   становится меньше.

Трудность возникает при расчете коэффициента пульсаций выпрямителей, поскольку, положив , приняли пульсации выпрямителя равными нулю. Однако если пульсации выходного напряжения небольшие, то и отклонения формы тока вентиля от косинусоидальной также окажутся небольшими. В результате для расчета переменной составляющей тока всех вентилей, проходящей через выходной конденсатор выпрямителя и определяющий его пульсации, можно воспользоваться формулой (2.9), но уже не как точной, а как приближенной. Так как выходное напряжение выпрямителя фильтруется сглаживающим фильтром, который сильно ослабляет высшие гармоники выходного напряжения, то достаточным для практики явится расчет коэффициента пульсаций по первой гармонике.

Примеры расчета выпрямителя с емкостным фильтром Исходными данными для расчета выпрямителя при нагрузке, начинающейся с емкостного элемента, являются: напряжение питающей сети ; число фаз питающей сети (m); частота питающей сети ; выпрямленное напряжение ; выпрямленный ток .

Пример. Рассчитать выпрямитель, создающий на нагрузке постоянное напряжение  = 50 В при токе  = 1,0 А. Параметры сети: трехфазная с «0», напряжение питающей сети переменного тока 220/380 В, частота сети  = 50 Гц. Коэффициент пульсаций выпрямителя по первой гармонике  = 0,025.

Находим коэффициент трансформации

Расчет выпрямителей при нагрузке, начинающейся с индуктивного элемента Выпрямитель гармонического напряжения при нагрузке, начинающейся с индуктивного элемента

Модель выпрямителя с учетом активных сопротивлений в фазах В модели выпрямителя, учитывающей влияние сопротивлений r в фазах выпрямителя, т.е. внутреннее сопротивление вентилей (идеализированный вентиль с потерями) и сопротивления обмоток трансформатора, это влияние сводится в основном к снижению выпрямленного напряжения пропорционально току .

Методика расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента Исходные данные для расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента, должны содержать: напряжение питающей сети ; число фаз питающей сети ; частоту питающей сети ; выпрямленное напряжение ; выпрямленный ток .

Пример расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента Рассчитать выпрямитель, создающий на нагрузке постоянное напряжение   = 120 В при токе   = 10 А. Питающая сеть - промышленная трехфазная с нулем (четырехпроводная) 220/380 В, 50 Гц. Коэффициент пульсаций напряжения в нагрузке по первой гармонике  = 0,012.

Требования, предъявляемые к современным вычислительным сетям