Схемы выпрямителей, фильтров. Расчет устройств

Структурная схема и классификация выпрямителей Выпрямитель можно представить в виде структурной схемы, в которую входят: силовой трансформатор (СТ), вентильный блок (ВБ), фильтрующее устройство (ФУ), цепь нагрузки (Н).

Основные схемы выпрямления Однофазную, однополупериодную схему обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризуется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения.

Двухполупериодная схема со средней точкой (схема Миткевича) Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Мостовая схема схема Греца Однофазная мостовая схема характеризуется высоким коэффициентом использования трансформатора по мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме. Достоинства – меньшее обратное напряжение на диодах в 2 раза, меньшие габариты, выше коэффициент использования трансформатора, чем в схеме со средней точкой. Недостаток – на диодах падение напряжения в 2 раза больше.

Трехфазная нулевая (схема звезда-звезда) В схему трехфазного выпрямителя со средней (нулевой) точкой входит трансформатор со вторичными обмотками, соединенными звездой. Выводы вторичных обмоток связаны с анодами трех вентилей. Нагрузка подключается к общей точке соединения катодов вентилей и среднему выводу вторичных обмоток

Трехфазная мостовая схема (схема Ларионова) Трехфазная мостовая схема обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема приме­няется в широком диапазоне выпрямленных напряжений и мощностей.

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке

Выпрямительные диоды Выпрямительные свойства полупроводниковых диодов характеризуются рядом параметров, определяющих токи и напряжения в прямом и обратном направлениях. Эти параметры определяются вольт-амперной характеристикой (ВАХ) диода

Выбор вентилей выпрямительного устройства

Классификация сглаживающих фильтров

Коэффициенты фильтрации и сглаживания фильтра Действие сглаживающего фильтра можно характеризовать коэффициентом фильтрации , который определяется, как отношение значений пульсации на входе и выходе фильтра:

Расчет Г-образного индуктивно-емкостного фильтра  Сглаживание пульсаций выпрямленного напряжения осуществляется более эффективно при помощи фильтров, составленных из повторяющихся Г-образных или П-образных звеньев

Особенности применения электролитических конденсаторов в выпрямительных устройствах При проектировании устройств электропитания схема фильтра и его параметры определяются исходя из требования сглаживания пульсаций выходного напряжения выпрямителя. На практике в фильтрах выпрямительных устройств наибольшее применение нашли электролитические конденсаторы (ЭК).

Модуль полного комплексного сопротивления реального конденсатора, исходя из схемы замещения (без учета тока утечки), на частоте f переменного напряжения (тока)

Производители выпускают серии ЭК с различными сроками службы

Методики анализа и расчета выпрямителей Анализ работы выпрямителя гармонического напряжения при нагрузке, начинающейся с емкостного элемента

Важно отметить заметную зависимость выходного напряжения выпрямителя от емкости выходного конденсатора. При увеличении емкости С спадание напряжения из-за разрядки конденсатора замедляется и угол открывания вентиля   становится меньше.

Трудность возникает при расчете коэффициента пульсаций выпрямителей, поскольку, положив , приняли пульсации выпрямителя равными нулю. Однако если пульсации выходного напряжения небольшие, то и отклонения формы тока вентиля от косинусоидальной также окажутся небольшими. В результате для расчета переменной составляющей тока всех вентилей, проходящей через выходной конденсатор выпрямителя и определяющий его пульсации, можно воспользоваться формулой (2.9), но уже не как точной, а как приближенной. Так как выходное напряжение выпрямителя фильтруется сглаживающим фильтром, который сильно ослабляет высшие гармоники выходного напряжения, то достаточным для практики явится расчет коэффициента пульсаций по первой гармонике.

Примеры расчета выпрямителя с емкостным фильтром Исходными данными для расчета выпрямителя при нагрузке, начинающейся с емкостного элемента, являются: напряжение питающей сети ; число фаз питающей сети (m); частота питающей сети ; выпрямленное напряжение ; выпрямленный ток .

Пример. Рассчитать выпрямитель, создающий на нагрузке постоянное напряжение  = 50 В при токе  = 1,0 А. Параметры сети: трехфазная с «0», напряжение питающей сети переменного тока 220/380 В, частота сети  = 50 Гц. Коэффициент пульсаций выпрямителя по первой гармонике  = 0,025.

Находим коэффициент трансформации

Расчет выпрямителей при нагрузке, начинающейся с индуктивного элемента Выпрямитель гармонического напряжения при нагрузке, начинающейся с индуктивного элемента

Модель выпрямителя с учетом активных сопротивлений в фазах В модели выпрямителя, учитывающей влияние сопротивлений r в фазах выпрямителя, т.е. внутреннее сопротивление вентилей (идеализированный вентиль с потерями) и сопротивления обмоток трансформатора, это влияние сводится в основном к снижению выпрямленного напряжения пропорционально току .

Методика расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента Исходные данные для расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента, должны содержать: напряжение питающей сети ; число фаз питающей сети ; частоту питающей сети ; выпрямленное напряжение ; выпрямленный ток .

Пример расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента Рассчитать выпрямитель, создающий на нагрузке постоянное напряжение   = 120 В при токе   = 10 А. Питающая сеть - промышленная трехфазная с нулем (четырехпроводная) 220/380 В, 50 Гц. Коэффициент пульсаций напряжения в нагрузке по первой гармонике  = 0,012.

Требования, предъявляемые к современным вычислительным сетям