Двойные интегралы при решении курсовой работы Замена переменной в определенном интеграле Производная сложной функции Двойные интегралы в полярных координатах Интегрирование по частям Несобственные интегралы

Кратные интегралы при решении задач контрольной работы

Несобственные интегралы

Пример Определить, при каких значениях k интеграл сходится.

Решение. Используя определение несобственного интеграла, можно записать Из этого выражения видно, что существует 2 случая:

Пример Вычислить интеграл . Вычислительная математика Градиентный метод

Решение. Следовательно, данный интеграл сходится.

Пример Определить, сходится или расходится несобственный интеграл ?

Решение. Заметим, что для всех x ≥ 1.

Поскольку интеграл сходится (смотрите пример 1), то искомый интеграл также сходится по теореме сравнения 1.

Пример

При интегрировании использовали формулы:

Пример

При интегрировании использовали формулы:

.

 Плоскость и прямая в пространстве.

Рассмотрим произвольную плоскость и на ней вектор-нормаль , то есть вектор, перпендикулярный плоскости и фиксированную точку .Возьмем текущую точку ,координаты которой меняются так, что точка  остается в плоскости, таким образом вектор  также всегда, при любых движениях точки  лежит в плоскости.

Итак, вектор  лежит в плоскости, а вектор ей перпендикулярен. Тогда их скалярное произведение равно нулю:

, или , где

Это общее уравнение плоскости.

Если , то разделив все члены уравнения на  получим уравнение плоскости в отрезках

.

абсцисса, ордината и аппликата точек пересечения плоскости с осями

Рассмотрим три заданные точки в пространстве ,  и .

Как известно, три точки определяют плоскость. Введём текущую точку , координаты которой меняются, но она не выходит за рамки плоскости. Рассмотри три вектора Все они лежат в плоскости , то есть они компланарны и их смешанное произведение равно нулю.

Это уравнение плоскости, проходящей через три заданные точки.

Геометрические приложения криволинейных интегралов