Двойные интегралы при решении курсовой работы Замена переменной в определенном интеграле Производная сложной функции Двойные интегралы в полярных координатах Интегрирование по частям Несобственные интегралы

Кратные интегралы при решении задач контрольной работы

Геометрические приложения поверхностных интегралов

Пример Вычислить интеграл с помощью формулы Грина. Контур интегрирования C представляет собой окружность (рисунок 7).

Решение. Компоненты векторного поля и их частные производные равны Тогда по формуле Грина получаем Для вычисления двойного интеграла удобно перейти к полярным координатам. Здесь Таким образом, интеграл равен Ручные вычисления по методу Гаусса. В процессе ручных вычислений по методу Гаусса заполняется таблица, которая состоит из нескольких разделов, соответствующих определенным этапам вычислений.
Рис.7

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

ЗАДАНИЕ №1.

Для решения контрольной работы №1 по математике и контрольной работы №1 по курсу алгебра и геометрия следует изучить разделы векторной алгебры, линейной алгебры и аналитической геометрии любых учебников. Для решения задач первой контрольной понадобятся следующие понятия и факты:

Для решения первой задачи:

Определители 2 и 3 порядков

 -определитель 2-го порядка

Заметим, что у элемента определителя  -номер строки, а -номер столбца

  -

 - определитель 3 порядка 

Геометрические приложения криволинейных интегралов