Двойные интегралы при решении курсовой работы Замена переменной в определенном интеграле Производная сложной функции Двойные интегралы в полярных координатах Интегрирование по частям Несобственные интегралы

Кратные интегралы при решении задач контрольной работы

Геометрические приложения поверхностных интегралов

Пример Используя формулу Грина, найти интеграл , где кривая C представляет собой окружность, заданную уравнением .

Решение. Сначала запишем компоненты векторного поля и определим частные производные: Следовательно, интеграл можно записать в следующем виде В последнем равенстве двойной интеграл численно равен площади круга , то есть . Тогда интеграл равен

Пример Используя формулу Грина, вычислить интеграл . Кривая C представляет собой окружность (рисунок 1), обход которой производится против часовой стрелки. Пространство переменных СДУ в нормальной форме называется фазовым пространством системы. Его структура может быть различной

Решение. Запишем компоненты векторного поля и их производные: Тогда где R − круг радиуса a с центром в начале координат. Переходя к полярным координатам, находим искомый интеграл:
Рис.1 Рис.2

Интегрирование правильных дробей методом разложения на простейшие дроби

Знаменатель правильной дроби имеет только действительные различные корни, то есть разлагается на линейные множители вида '' ''.

Пример . Вычислить интеграл .

Подынтегральная функция разлагается на сумму трех простейших дробей ,
где А, В, С – неопределенные коэффициенты. Найдем А, В, С.

. Пусть , тогда

. Пусть х=2, тогда или .

Пусть х=-1, тогда или .

Итак, . Имеем:

=

=

Случай . Знаменатель правильной дроби имеет только действительные корни, причем некоторые из них кратные, то есть знаменатель разлагается на линейные множители вида '' '', некоторые из них повторяются.

Пример 1. Пусть в задаче №3

 Построим заданную линию по точкам в полярной системе координат. В начале определим область допустимых значений (ОДЗ) независимой переменной φ. По определению полярной системы координат  и .Точке r = 0 соответствует полюс 0.

 По условию задач угол φ может меняться от 0 до 2π. Поэтому наибольшие размеры ОДЗ таковы . При этом r>0 (r0), т.к. числитель соответствующей дроби 4>0. отсюда знаменатель этой дроби также должен удовлетворять неравенству

2-3cos φ > 0 или cos φ < 2/3.

 Решаем последнее неравенство

cos φ = 2/3 0,667;

0,667 +2πk, kN; φ =.

 В промежуток  попадают два значения φ1= и φ2 = -.

 Отсюда для  cos φ<2/3.

 Следовательно допустимые значения φ принадлежат промежутку от 3π/8 до 13π/8, т.е. ОДЗ: .

 Результаты расчетов заносим в таблицу

φ

3π/8

π/2

5π/8

6π/8

7π/8

π

9π/8

10π/8

11π/8

12π/8

13π/8

cosφ

0.38

0

-0.38

-0.71

-0.92

-1

-0.92

-0.71

-0.38

0

0.38

r

4.75

2

1.27

0.97

0.84

0.8

0.84

0.97

1.27

2

4.75

 Строим чертеж ,откладывая на луче , проведенном из полюса О под определенным углом φ, соответствующие значения радиус-вектора r из таблицы

 


 

 rl(φ)

 

 

 Для перехода к системе 0ху воспользуемся формулами. Имеем, следовательно

r (2-3cos φ)=4, 

 

 Определяем ОДЗ для х. Из ОДЗ : для φ >0.

Следовательно 3х+4>0. Отсюда ОДЗ: х>-4/3.

 Возводим правую и левую части равенства в квадрат и выделяем полный квадрат для переменной х:

4х2+4у2=9х2+24х+16;

(5х2+24х)-4у2+16=0;

5(х2+2;

(х+12/5)2-4/5у2-144/25+16/5=0;

(х+12/5)2-4у2/5=64/25

  Окончательно получаем уравнение гиперболы

  х > -

с центром в точке С(-12/5;0), а = 8/5, b = 4/.

 Находим координаты фокусов, уравнения асимптот и эксцентриситет. Для этого систему координат 0ху параллельно перенесем в точку . Заменяя переменные

=х+12/5,  =у,

получим в новой системе координат  уравнение гиперболы с центром в

Получим координаты фокусов, уравнения асимтот и эксцентриситет гиперболы:

 

  или ,

Переходим в старую систему координат. Имеем:

  .

Следовательно:

F1(x;y)=F1(=F1(-24/5;0);

F2(0;0), у = +

 Совмещаем начало О системы координат Оху с полюсом, отмечаем координаты фокусов F1 и F2, проводим асимптоты и строим пунктиром левую ветвь гиперболы, т.к. точки гиперболы в полуплоскости слева от прямой х=-4/3 не удовлетворяют ОДЗ х>-4/3.

  

Более подробное описание кривых второго порядка смотрите в [1] гл.3; в [2] §24.

В случае если уравнение не подходит под один из перечисленных выше частных случаев линии второго порядка требование задачи «назвать линию» следует опустить.

Геометрические приложения криволинейных интегралов