Двойные интегралы при решении курсовой работы Замена переменной в определенном интеграле Производная сложной функции Двойные интегралы в полярных координатах Интегрирование по частям Несобственные интегралы

Кратные интегралы при решении задач контрольной работы

Геометрические приложения поверхностных интегралов

С помощью поверхностных интегралов вычисляются

Площадь поверхности Пусть S является гладкой, кусочно-непрерывной поверхностью. Площадь поверхности определяется интегралом Если поверхность S задана параметрически с помощью вектора то площадь поверхности будет равна где D(u,v) − это область, в которой задана поверхность. Если поверхность S задана в явном виде функцией z(x,y), то площадь поверхности выражается формулой где D(x,y) − проекция поверхности S на плоскость xy. Объем тела, ограниченного замкнутой поверхностью Предположим, что тело ограничено некоторой гладкой, замкнутой поверхностью S. Тогда объем тела определяется по формуле

С точностью до 0,001 вычислить интеграл

Т.к. интегрирование производится в окрестности точки х=0, то можно воспользоваться для разложения подинтегральной функции формулой Маклорена.

  Разложение функции cosx имеет вид:

Зная разложение функции cosх легко найти функцию 1 – cosx:

 

В этой формуле суммирование производится по п от 1 до бесконечности, а в предыдущей – от 0 до бесконечности. Это – не ошибка, так получается в результате преобразования.

Теперь представим в виде ряда подинтегральное выражение.

 

Теперь представим наш интеграл в виде:

 

В следующем действии будет применена теорема о почленном интегрировании ряда. (Т.е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда).

Пример 2.  Прямые  и  являются сторонами треугольника, а точка -точкой пересечения третьей стороны с высотой, опущенной на неё. Составить уравнение третьей стороны.

а) Точка А является точкой пересечения прямых АВ и АС, т.е. лежит и на той и на другой прямой. Значит её координаты должны удовлетворять и уравнению прямой АВ и уравнению прямой АС.

 сложим уравнения 

Итак, точка А (2,-3).

Высота АР – это прямая, проходящая через две заданные точки А и Р:

 

   ; 

  (АР)

 то есть угловой коэффициент  высоты АР равен -5

в) Прямая ВС перпендикулярна АР, значит её угловой коэффициент

.

Значит её уравнение с угловым коэффициентом имеет вид

(ВС) , где неизвестно.

Но мы знаем, что прямая ВС проходит через точку Р, -значит координаты точки Р обращают уравнение ВС в тождество.

Подставим координаты точки Р в уравнение ВС:



Итак, уравнение ВС:

 

 или

 

Более подробно этот материал можно найти в  глава 2;  §7, §8; в  глава 1 §2 можно найти аналогичные решенные задачи

Геометрические приложения криволинейных интегралов