Двойные интегралы при решении курсовой работы Замена переменной в определенном интеграле Производная сложной функции Двойные интегралы в полярных координатах Интегрирование по частям Несобственные интегралы

Кратные интегралы при решении задач контрольной работы

Геометрические приложения криволинейных интегралов

Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются

Длина кривой Пусть C является гладкой, кусочно-непрерывной кривой, которая описывается вектором . Длина данной кривой выражается следующим криволинейным интегралом где − производная, а − компоненты векторной функции . Если кривая C задана в плоскости, то ее длина выражается формулой Если кривая C представляет собой график заданной явно, непрерывной и дифференцируемой функции в плоскости Oxy, то длина такой кривой вычисляется по формуле Наконец, если кривая C задана в полярных координатах уравнением , и функция является непрерывной и дифференцируемой в интервале , то длина кривой определяется выражением Площадь области, ограниченной замкнутой кривой Пусть C является гладкой, кусочно-непрерывной и замкнутой кривой, заданной в плоскости Oxy (рисунок 1). Тогда площадь области R, ограниченной данной кривой, определяется формулами Здесь предполагается, что обход кривой C производится против часовой стрелки. Если замкнутая кривая C задана в параметрическом виде , то площадь соответствуюшей области равна
Рис.1 Рис.2

Объем тела, образованного вращением замкнутой кривой относительно оси Ox Предположим, что область R расположена в верхней полуплоскости y ≥ 0 и ограничена гладкой, кусочно-непрерывной и замкнутой кривой C, обход которой осуществляется против часовой стрелки. В результате вращения области R вокруг оси Ox образуется тело Ω (рисунок 2). Объем данного тела определяется формулами

Рассмотрим пример. Найти.

Решение.- это несобственный интеграл, и прежде всего следует установить его сходимость. По определению, . Первый из интегралов – собственный, второй – сходится по 1-й теореме о сравнении, т.к. при справедливы неравенства , а , очевидно, сходится.

Обозначим (очевидно, ). Тогда, поскольку обозначение переменной интегрирования можно выбрать произвольным, , где - квадрат, а - четверти круга, соответственно, радиусов . Т.к. , то по свойствам 2 и 3 двойного интеграла . В интеграле п перейдем к полярным координатам:. Аналогично, и . При стремлении получаем, что , т.е. .

Функцией распределения случайной величины Х называется функция y = F(x) такая, что F(x) = P(X < x) для всех .

 Случайная величина Х называется абсолютно непрерывной, если ее функция распределения y = F(x) дифференцируема во всех точках за исключением, быть может, конечного числа точек, при этом функция   называется плотностью распределения случайной величины Х.

 Пусть y = f(x) − плотность распределения абсолютно непрерывной случайной величины Х, тогда

1)  ;

2)   − функция распределения случайной величины Х;

3)   − математическое ожидание случайной величины Х при условии, что несобственный интеграл сходится;

4)   − второй момент случайной величины Х при условии, что несобственный интеграл сходится;

5)  −  дисперсия случайной величины Х;

6) любое решение уравнения  , где y = F(x) − функция распределения случайной величины Х, является медианой случайной величины Х и обозначается Ме(Х).

 

Геометрические приложения криволинейных интегралов