Двойные интегралы при решении курсовой работы Замена переменной в определенном интеграле Производная сложной функции Двойные интегралы в полярных координатах Интегрирование по частям Несобственные интегралы

Кратные интегралы при решении задач контрольной работы

Интегрирование по частям

Пример Вывести формулу редукции (понижения степени) для .

Решение. Используя формулу интегрирования по частям , полагаем . Тогда Следовательно, Решим полученное уравнение относительно . Получаем

Найти предел .

 

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + g¢(x) = ex;

 

Пример

При интегрировании использовали формулы , при

Пример

При интегрировании использовали формулы: и

Следующую задачу решите самостоятельно:

4.1. Решить систему уравнений методом Крамера .

ЗАДАНИЕ №5

Задача №5 – это задача нахождения обратной матрицы.

Какие операции можно выполнить над матрицами?

Сложение матриц:

Умножение матрицы на число:

Умножение матриц:

Транспонирование матриц: 

То есть элемент матрицы  находящийся в позиции  совпадает с элементом матрицы А, находящимся в позиции . Таким образом строки матрицы А переходят в столбцы , а столбцы– в строки.

Нахождение определителя (для квадратных матриц):

Для нахождения определителя третьего порядка мы пользовались в предыдущих задачах формулой:

,

Т.е. умножили элементы первой строки на определители, которые останутся от исходного определителя третьего порядка, если вычеркнуть этот элемент вместе со своей строкой и столбцом.

Определителем матрицы n-го порядка

  называется число D

Где – элементы первой строки, знак совпадает со знаком

– минор – то есть определитель, матрицы порядка n-1, полученной вычеркиванием i-ой строки и j-го столбца.

Таким образом

  – формула разложения определителя по i-ой строке.

Число   назовем алгебраическим дополнением элемента . И тогда формулу определителя можно написать в виде:

Нахождение обратной матрицы (если ):

, где  – алгебраическое дополнение элемента

Для обратной матрицы

, где Е – единичная матрица

.

Можно построить обратную матрицу методом Жордана. Для этого следует составить расширенную матрицу (А/Е). Если подвергнуть строки этой матрицы элементарным преобразованиям (сложение и умножение на число) с целью получить на месте матрицы А единичную матрицу Е, то на месте матрицы Е получится   – обратная к А.

Геометрические приложения криволинейных интегралов