Записать двойной интеграл Вычислить криволинейный интеграл 1-го рода Обыкновенные дифференциальные уравнения Вычисление площадей плоских фигур Тройной интеграл Вычислить объем тела Замена переменных в тройном интеграле

Переход к полярным координатам в двойном интеграле.

Пример 2. Вычислить , если область D ограничена окружностью , лежащей в первой четверти, и прямыми y=x и .

Решение: Область D изображена на рис.21. Переведем ее границы в полярные координаты: уравнение окружности имеет вид r=a , а отрезки прямых y=x   являются лучами  и . Проводя лучи φ=const , определяем, что координата r изменяется от 0 до а. Тогда по формуле (5) получаем:

 Рис.21

Пример 3. В двойном интеграле  перейти к полярным координатам и расставить пределы интеграции в том и другом порядке, если область D ограничена кривой .

Решение: Чтобы построить область D, приведем уравнение кривой к каноническому виду, для чего выделяем полный квадрат по переменной х: , . Получаем уравнение окружности с центром на оси Ох в точке х=а, у=0, радиуса а, при этом окружность касается оси Оу (рис.22а,б).

 


 Рис.22а Рис.22б

Переведем границу области D в полярные координаты, для этого удобнее воспользоваться уравнением окружности в виде :  или . Область D находится между лучами  и  и проводя

лучи при , определяем, что координата r изменяется от 0 в начале координат до значения радиуса на окружности, т.е. до значения  (рис.22а). Тогда по формуле (5) расставляем пределы интегрирования:

Чтобы расставить пределы интегрирования в другом порядке, определим границы изменения координаты r. Для этого проведем координатные линии r=const, пересекающие область D, и определим окружности, которые касаются нашей области. Очевидно, что это будут линии r=0 и r=2а, так что r изменяется в пределах от 0 до а (рис.22б).

Для нахождения границ изменения переменной φ уравнение окружности   разрешим относительно φ:   или . Для нижней ветви окружности берется знак «-», а для верхней ветви – знак «+». Теперь по координатным линиям r=const, которые пересекают область D, определяем границы изменения φ: от значения на нижней ветви окружности до значения на верхней ветви окружности. В результате по формуле (6) получаем:


Изменить порядок интегрирования в повторном интеграле