Записать двойной интеграл Вычислить криволинейный интеграл 1-го рода Обыкновенные дифференциальные уравнения Вычисление площадей плоских фигур Тройной интеграл Вычислить объем тела Замена переменных в тройном интеграле

Обыкновенные дифференциальные уравнения

 Решение типового варианта контрольной работы.

Задание 2. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям .

Решение.  - неоднородное линейное дифференциальное уравнение с постоянными коэффициентами 2-ого порядка. Решение будем искать в виде суммы решений: общего решения однородного уравнения  и частного решения неоднородного уравнения , которое будем искать по виду правой части. Начнем с отыскания .

  Составим характеристическое уравнение:  .

Следовательно, общее решение однородного уравнения: .

  будем искать в виде . - частное решение уравнения, поэтому оно превращает его в верное числовое тождество. Подставим его в уравнение и вычислим А. .

. Значит . Таким образом, общее решение неоднородного уравнения . Для вычисления частного решения определим значения констант исходя из начальных условий:

; ;

;

Ответ: .

Задание 3. Найти общее решение системы дифференциальных уравнений.

Решение. Сведем предложенную систему к одному дифференциальному уравнению с постоянными коэффициентами второго порядка. Для этого продифференцируем первое уравнение системы по t:

  и заменим  воспользовавшись для этого вторым уравнением системы:

. Окончательно .

- однородное линейное дифференциальное уравнение с постоянными коэффициентами. Составим характеристическое уравнение: .

Следовательно, решение: . Из первого уравнения , поэтому ;

.

Ответ: ; .

Задание 4. Записать уравнение кривой, проходящей через точку, для которой треугольник, образованный осью Оу, касательной к кривой в произвольной её точке и радиус-вектором точки касания, равнобедренный (причем основанием его служит отрезок касательной от точки касания до оси Оу).

Решение. Пусть  искомое уравнение кривой. Проведем касательную MN в произвольной точке M(x;y) кривой до пересечения с осью Оу в точке N. Согласно условию, должно выполняться равенство, но , а  найдем из уравнения , полагая X=0, то есть.

Итак, приходим к однородному уравнению .

Полагая y=tx (y’=t’x+t), получим  или , откуда  – данное решение представляет собой семейство парабол, осью которых является ось Оу.

Определим значение константы С исходя из того, что кривая проходит через точку . Подставляя координаты заданной точки в вышенайденное общее решение, получим ; из двух значений С=0 и С=2 нас устраивает лишь второе, так как при С=0 парабола оказывается вырожденной. Итак, искомое решение , или .

Ответ: .


Изменить порядок интегрирования в повторном интеграле