Магнитное поле соленоида Элементы теории ферромагнетизма. Явление самоиндукции. Индуктивность проводников Резонансные явления в колебательном контуре Основы классической теории электропроводности металлов

Физика курс лекций Теория электромагнитного поля

Поляризация электромагнитных волн определяется тем, как ведет себя вектор напряжянности электрического поля по мере его распространения. Волна называется линейно поляризованной, если вектор Е, изменяясь во времени, остается параллельным некоторому направлению, которое и является направлением поляризации волны.

Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.

Как следует из приведенных формул, при частоте переменной ЭДС ω, равной

 ,

амплитудное значение силы тока в колебательном контуре, принимает максимальное значение . При этом амплитуда напряжения на активном сопротивлении R также максимальна и равна UR0 =I0maxR =E0. Падения напряжения на емкости UC и индуктивности UL одинаковы по амплитуде, но противоположны по фазе, и они взаимно компенсируют друг друга. Это явление, имеющее место в последовательном колебательном контуре, изображенном на рис.16.5, называется резонансом напряжений. Векторная диаграмма, соответствующая этому случаю, показана на рис.16.7.  Внутренняя энергия. Важной характеристикой любой термодинамической системы является ее внутренняя энергия – энергия хаотического теплового движения частиц системы - молекул, атомов и энергия их взаимодействия. К внутренней энергии не относится кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Рис.16.7. Векторная диаграмма при резонансе напряжений.

Максимальное значение амплитуды напряжения на конденсаторе UC0(ω) достигается при частоте

.

Резонансные кривые для UC0(ω) представлены на рис.16.8. Максимум получается тем выше и острее, чем меньше коэффициент затухания β, то есть чем меньше активное сопротивление R и больше индуктивность контура L.

 


Рис.16.8. Резонансные кривые UC0(ω).

Если источник переменной ЭДС подключить параллельно конденсатору, то получим  колебательный контур, который называется параллельным (рис.16.9).

Рис.16.9. Параллельный колебательный RLC-контур.

В таком контуре при  наблюдается другое резонансное явление, получившее название резонанса токов. При резонансе токов токи, текущие через емкость и индуктивность одинаковы по амплитуде, но противоположны по фазе. При этом общий ток в цепи ЭДС близок к нулю, хотя токи в самом контуре могут быть очень велики. Векторная диаграмма, соответствующая этому случаю, приведена на рис.16.10.

Рис.16.10. Векторная диаграмма при резонансе токов.

Можно показать, что при резонансе токов полное сопротивление Z(ω) параллельного контура максимально и равно чисто активному сопротивлению R. Резонансная частота, при которой Z(ω) максимально, определяется из условия равенства нулю реактивной части комплексного сопротивления :

ωL(1 – ω2LC) – ωCR2 = 0 ,

откуда

.

Резонансные кривые для амплитудных значений IC0(ω) тока, текущего через конденсатор, приведены на рис.16.11.

Рис.16.11. Резонансные кривые IC0(ω). 

Резонансные явления в колебательных контурах широко используются в электро- и радиотехнике (резонансные усилители, частотные фильтры и другие). В частности, явление резонанса используется для выделения из сложного сигнала нужной частотной составляющей. Настроив контур (путем изменения его параметров C и/или L) на одну из выбранных частот, можно получить на конденсаторе напряжение, в Q раз превышающее величину напряжения данной частотной составляющей (см. рис.16.8). Такой процесс осуществляется, например, при настройке радиоприемника на нужную длину волны.

Общие свойства и характеристики волновых процессов. Волновое уравнение. Типы и характеристики волн. Процесс распространения колебаний в пространстве называется волновым процессом или просто волной. Волны различной природы (звуковые, упругие, электромагнитные) описываются сходными дифференциальными уравнениями в частных производных второго порядка по пространственно-временным переменным. Уравнение, описывающее волновой  процесс, называется волновым уравнением, функция, которая удовлетворяет этому уравнению – волновой функцией.

Электромагнитные волны. Из уравнений Максвелла следует, что если возбудить с помощью зарядов переменное электрическое или магнитное поле, в окружающем пространстве возникнет последовательность взаимных превращений электрического и магнитного полей, распространяющихся в виде электромагнитной волны. Для однородной нейтральной (ρ=0) и непроводящей () среды с постоянными проницаемостями ε и μ, волновое уравнение, описывающее электромагнитную волну, распадается на два независимых векторных уравнения соответственно для электрического  и магнитного полей

Упругие волны в твердых телах. Аналогия с электромагнитными волнами. Законы распространения упругих волн в твердых телах вытекают из общих уравнений движения однородной упруго деформированной среды

Теория атома водорода по Бору Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Эффект Допплера. При движении источника и(или) приемника звуковых волн относительно среды, в которой распространяется звук, воспринимаемая приемником частота ν, может оказаться отличной от частоты звука ν0, испускаемого источником. Это явление называется эффектом  Допплера

В данной работе мы исследовали магнитное поле проводника тороидальной формы методом электромоделирования. Убедились, что векторная линия поля Н совпадает с окружностью - контуром сечения проводящего тора, поле постоянного тока математически аналогично магнитному полю. Так же рассчитали настил тока К и индуктивность L для двух случаев: свободный проводник и проводник с сердечником.
Резонанс напряжений и резонанс токов