Геометрия
Практикум
Математика
Лекции
Графика
Сопромат
Алгебра
Физика

Контрольная

Задачи
Типовой
На главную
Черчение
Механика
Курсовая
Электротехника

Физика курс лекций Теория электромагнитного поля

Объектом исследования является проводник тороидальной формы, обтекаемый переменным током с действующим значением I. Предполагается, что в проводнике имеет место резкий поверхностный эффект. Глубина проникновения значительно меньше радиуса сечения, ток и магнитное поле сосредоточены в поверхностном слое конечной толщины порядка нескольких .

Классификация магнетиков.

В то время как диэлектрическая проницаемость ε у всех веществ всегда больше единицы (диэлектрическая восприимчивость κ>0), магнитная проницаемость μ может быть как больше единицы, так и меньше единицы (соответственно магнитная восприимчивость χ >0 и χ<0). Поэтому магнитные свойства веществ отличаются гораздо большим разнообразием, чем электрические свойства.

По классификации В.Л.Гинзбурга (Нобелевская премия по физике, 2004г.) можно выделить шесть типов магнетиков. Они перечислены в приводимой ниже таблице.

 Таблица. Современная классификация магнетиков.

Тип магнетика

Магнитная восприимчивость, χ

Диамагнетик

 - (10-9 – 10-4), μ<1

Парамагнетик

 10-6 – 10-3, μ>1

Ферромагнетик

 103 – 105 , μ(Н)>>1

Ферримагнетик

 101 – 103 , μ(Н)>>1

Антиферромагнетик

 10-4 – 10-6, μ>1

Сверхдиамагнетик

 - 1 , μ=0

Дадим краткую характеристику каждого типа магнетика.

Диамагнетики – вещества, характеризуемые отрицательным значением магнитной восприимчивости χ. Вследствие этого вектор намагничивания   в этих веществах направлен противоположно внешнему намагничивающему полю . Диамагнетиками являются, например, вода (χ = - 9∙10-6), серебро (χ = - 2,6∙10-5), висмут (χ = - 1,7∙10-4).

Парамагнетики – характеризуются положительным значение χ , ведут они себя подобно диэлектрикам с диэлектрической проницаемостью ε>1, то есть вектор  в этих веществах параллелен намагничивающему полю . К парамагнетикам относятся алюминий (χ = 2,1∙10-6), платина (χ = 3∙10-4), хлористое железо (χ = 2,5∙10-3).

Ферромагнетики – особый вид магнетиков, отличающийся от других магнетиков следующими характерными признаками: 1) высоким значением магнитной восприимчивости (см. таблицу); 2) зависимостью магнитной проницаемости μ от напряженности магнитного поля, вследствие чего зависимость   от  для этих веществ является нелинейной; 3) наличием петли гистерезиса на кривой намагничивания; 4) существованием температуры, называемой точкой Кюри, выше которой ферромагнетик ведет себя как обычный парамагнетик. Из чистых металлов ферромагнетиками являются железо, никель, кобальт, а также некоторые редкоземельные металлы (например, гадолиний). К числу ферромагнетиков относятся сплавы и соединения этих металлов, а также сплавы и соединения марганца и хрома с неферромагнитными элементами (например, MnAlCu, CrTe и другие).

Ферримагнетики (ферриты) – вещества, в которых магнитные моменты атомов кристаллической решетки образуют несколько магнитных подрешеток с магнитными моментами, направленными навстречу друг другу. Имея меньшую величину магнитной восприимчивости по сравнению с ферромагнетиками, в остальном ферримагнетики характеризуются теми же признаками, что и ферромагнетики. Типичными ферритами являются соединения оксидов железа с оксидами других металлов - шпинели (MnFe2O4), гранаты Gd3Fe5O12), гексаферриты (PbFe12O19). Другую группу ферритов образуют двойные фториды типа RbNiF3, а также соединения типа RFe2 (R – редкоземельный металл).

Антиферромагнетики – частный случай ферримагнетиков, в которых магнитные моменты подрешеток с противоположно направленными магнитными моментами полностью компенсируют друг друга (скомпенсированный ферримагнетик). Существование антиферромагнетиков было предсказано Л.Д.Ландау в 1933г. В настоящее время известен широкий спектр веществ, обладающих антиферромагнитными свойствами: редкоземельные элементы (Er, Dy, Ho), оксиды и дифториды некоторых металлов (FeO, MnO, CoF2, NiF2), соли угольной и серной кислот (MnCO3, NiSO4) и другие.

Сверхдиамагнетики (идеальные диамагнетики) – вещества, магнитная прони-цаемость μ которых равна нулю. Благодаря этой особенности для сверхдиамагнетиков имеет место эффект Мейсснера-Оксенфельда (Meissner W., 1882-1974; Ocksenfeld C.) – полное выталкивание магнитного поля из объема сверхдиамагнетика (магнитная индукция=0). Сверхдиамагнетиками являются все вещества, находящиеся в сверхпроводящем состоянии - низкотемпературные сверхпроводники (металлы) и высокотемпературные сверхпроводники (керамики). Из несверхпроводящих материалов, обладающих сверхдиамагнитными свойствами, известен пока только один пример – хлорид меди (CuCl), открытый в 1986г. (Русаков А.П., МИСиС).

Граничные условия для магнитного поля.

При переходе через границу раздела двух магнетиков с различными магнитными проницаемостями μ1 и μ2 силовые линии магнитного поля испытывают преломление (рис.11.2). Для того, чтобы выяснить, как происходит преломление линий поля необходимо установить для его нормальных и тангенциальных составляющих граничные условия. Вывод граничных условий для магнитного поля в точности аналогичен выводу граничных условий для электрического поля и основывается на применении основных теорем магнитостатики – теоремы Гаусса и теоремы о циркуляции магнитного поля.

Рис.11.2. К выводу граничных условий для магнитного поля.

Для нормальных составляющих индукции теорема Гаусса дает (см. рис.11.2):

,

где S1 = S2.

Поток индукции поля через боковую поверхность цилиндра при  (переход к пограничному слою) становится исчезающе малым и им можно пренебречь. Следовательно, при переходе через границу раздела двух однородных магнетиков нормальные составляющие индукции магнитного поля непрерывны:

.

Считая, что по границе раздела магнетиков не текут поверхностные токи (I = 0), будем иметь для тангенциальных составляющих напряженности магнитного поля, согласно теореме о циркуляции поля (рис.11.2):

,

где a1 = а2 = а.

Составляющие циркуляции поля по коротким сторонам контура обхода границы при  (стягивание к границе) исчезают. Таким образом, приходим к выводу, что при переходе через границу раздела двух однородных магнетиков тангенциальные составляющие напряженности магнитного поля непрерывны:

.

Для построения картины преломления силовых линий поля на границе раздела двух магнетиков к полученным граничным условиям необходимо присоединить еще условия, вытекающие из материального уравнения, связывающего векторы  и :

 и .

Тем самым, задача о преломлении линий поля полностью решается.

В связи с этим можно предложить следующий способ построения модели. Тороидальный проводник с током I заменяется геометрически подобным диэлектрическим тором, который помещается в электролитическую ванну. Ля возбуждения тока во внутренней области тора располагается двойной электрический слой постоянной мощности. Его физическая реализация - металлизированная с двух сторон диэлектрическая пластина, к которой приложено напряжение U0.

Ядерные реакторы

AutoCAD
Электротехника
Сети
Искусство
Интегралы
Математика