Фотопроводимость полупроводников Полупроводниковые диоды и триоды Методы наблюдения интерференции света Дифракция света теория дисперсии света Теория атома водорода по Бору Элементы квантовой механики

Физика Лекции и примеры выполнения задач контрольной и курсовой работы

Применение фотоэффекта

На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы — приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.

Простейшим фотоэлементом с внешним фотоэффектом является вакуумный фотоэлемент. Он представляет собой откачанный стеклянный баллон, внутренняя поверхность которого (за исключением окошка для доступа излучения) покрыта фоточувствительным слоем, служащим фотокатодом. В качестве анода обычно используется кольцо или сетка, помещаемая в центре баллона. Фотоэлемент включается в цепь батареи, э.д.с. которой выбирается такой, чтобы обеспечить фототок насыщения. Выбор материала фотокатода определяется рабочей областью спектра: для регистрации видимого света и инфракрасного излучения используется кислородно-цезиевый катод, для регистрации ультрафиолетового излучения и коротковолновой части видимого света — сурьмяно-цезиевый. Вакуумные фотоэлементы безынерционны, и для них наблюдается строгая пропорциональность фототока интенсивности излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов, например фотоэлектрический экспонометр, люксметр (измеритель освещенности) и т. д. Две частицы, имеющие массу 1 мг и заряд 10–9 Кл каждая, летят из бесконечности со скоростями υ1 = 1 м/c и υ2 = 2 м/с навстречу друг другу. На какое минимальное расстояние они могут сблизиться? Гравитационное взаимодействие не учитывать. Ответ представьте в миллиметрах.

Для увеличения интегральной чувствительности вакуумных фотоэлементов (фототок насыщения, приходящийся на 1 лм светового потока) баллон заполняется разреженным инертным газом (Аr или Ne при давлении »1,3¸13 Па). Фототок в таком элементе, называемом газонаполненным, усиливается вследствие ударной ионизации молекул газа фотоэлектронами. Интегральная чувствительность газонаполненных фотоэлементов (» 1 мА/лм) гораздо выше, чем для вакуумных (20—150 мкА/лм), но они обладают по сравнению с последними большей инерционностью (менее строгой пропорциональностью фототока интенсивности излучения), что приводит к ограничению области их применения.

Для усиления фототока применяются уже рассмотренные выше (см. рис. 155) фотоэлектронные умножители, в которых наряду с фотоэффектом используется явление вторичной электронной эмиссии (см. § 105). Размеры фотоэлектронных умножителей немного превышают размеры обычной радиолампы, общий коэффициент усиления составляет »107 (при напряжении питания 1—1,5 кВ), а их интегральная чувствительность может достигать 10 А/лм. Поэтому фотоэлектронные умножители начинают вытеснять фотоэлементы, правда, их применение связано с использованием высоковольтных стабилизированных источников питания, что несколько неудобно.

Фотоэлементы с внутренним фотоэффектом, называемые полупроводниковыми фотоэлементами или фотосопротивлениями (фоторезисторами), обладают гораздо большей интегральной чувствительностью, чем вакуумные. Для их изготовления используются PbS, CdS, PbSe и некоторые другие полупроводники. Если фотокатоды вакуумных фотоэлементов и фотоэлектронных умножителей имеют красную границу фотоэффекта не выше 1,1 мкм, то применение фотосопротивлений позволяет производить измерения в далекой инфракрасной области спектра (3¸4 мкм), а также в областях рентгеновского и гамма-излучений. Кроме того, они малогабаритны и имеют низкое напряжение питания. Недостаток фотосопротивлений — их заметная инерционность, поэтому они непригодны для регистрации быстропеременных световых потоков.

Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементами с запирающим слоем), обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность (примерно 2—30 мА/лм) и не нуждаются во внешнем источнике э.д.с. К числу вентильных фотоэлементов относятся германиевые, кремниевые, селеновые, купроксные, сернисто-серебряные и др.

Кремниевые и другие вентильные фотоэлементы применяются для создания солнечных батарей, непосредственно преобразующих световую энергию в электрическую. Эти батареи уже в течение многих лет работают на космических спутниках и кораблях. К.п.д. этих батарей составляет »10% и, как показывают теоретические расчеты, может быть доведен до »22%, что открывает широкие перспективы их использования в качестве источников электроэнергии для бытовых и производственных нужд.

Рассмотренные виды фотоэффекта используются также в производстве для контроля, управления и автоматизации различных процессов, в военной технике для сигнализации и локации невидимым излучением, в технике звукового кино, в различных системах связи и т. д.

Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

Масса и импульс фотона. Давление света

Эффект Комптона и его элементарная теория Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892—1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Механические и электромагнитные колебания Гармонические колебания и их характеристики Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др Механические гармонические колебания

Гармонический осциллятор. Пружинный, физический и математический маятники

 

Электромагнитное взаимодействие - одно из 4 фундаментальных взаимодействий. Оно проявляется в виде неких электрических и магнитных (электромагнитных) сил, действующих на частицы, способные их почувствовать. Возможность совершения этими силами работы мы воспринимаем, как электромагнитную энергию. Пространство, в каждой точке которого заряженная частица может ощущать воздействие этих сил, будем называть электромагнитным полем.
Физика примеры решения задач