Механика Молекулярная физика и термодинамика Электростатика и постоянный ток Электромагнетизм Закон Ампера ФИЗИКА АТОМА И ОСНОВЫ  ФИЗИКИ ЯДРА Геометрическая оптика

Физика задачи. Примеры контрольной по разделам Механика, Молекулярная физика, Электростатика, Оптика

ЭЛЕКТРОМАГНЕТИЗМ

Пример 5. Соленоид имеет длину  и сечение . При некоторой силе тока, протекающего по обмотке, в соленоиде создается магнитный поток . Чему равна энергия W магнитного поля соленоида? Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.

Дано: ; ; ;

 ; .

Найти: .

Решение. Энергию однородного магнитного поля определим по формуле

 , (5.1)

где  – объем соленоида:

  (5.2)

 – объемная плотность энергии магнитного поля

 . (5.3)

Магнитный поток через каждый виток соленоида

 ,

так как нормаль  к плоскости витков совпадает по направлению с вектором  и, соответственно,   и .

Отсюда

 .

Подставляя это выражение в уравнение (5.3), получим

 . (5.3)

С учетом формул (5.2) и (5.3) уравнение (5.1) принимает вид

 .

Подставляя численные значения величин, получаем

 .

Задачи

4.01. Электрон движется в однородном магнитном поле перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если индукция поля , а радиус кривизны траектории .

4.02. Электрон движется по окружности в однородном магнитном поле напряженностью . Определить период Т обращения электрона.

4.03. Электрон движется в магнитном поле с индукцией  по окружности радиусом . Какова кинетическая энергия Т электрона? Ответ дать в джоулях и электрон-вольтах.

4.04. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле индукцией  под углом  к направлению линий индукции. Определить силу Лоренца , если скорость частицы  .

4.05. Заряженная частица с энергией  движется в однородном магнитном поле по окружности радиусом . Определить силу   , действующую на частицу со стороны поля.

4.06. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией . Определить момент импульса L, которым обладала частица при движении в магнитном поле, если траектория ее представляла дугу окружности радиусом .

4.07. Прямой провод длиной , по которому течет ток силой , движется в однородном магнитном поле с индукцией . Какую работу А совершат силы, действующие на провод со стороны поля, переместив его на , если направление перемещения перпендикулярно линиям индукции и длине провода?

4.08. Электрон, ускоренный разностью потенциалов , влетает в однородное магнитное поле под углом  к направлению поля и начинает двигаться по винтовой линии. Индукция магнитного поля . Найти: 1) радиус витка винтовой линии; 2) шаг винтовой линии.

4.09. Заряженная частица прошла ускоряющую разность потенциалов

 и влетела в скрещенные под прямым углом электрическое

() и магнитное () поля. Определить отношение заряда частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

4.10. Протон влетает в однородное магнитное поле под углом  к направлению поля и движется по винтовой линии радиусом 1,5 см. Индукция магнитного поля . Найти кинетическую энергию протона.

4.11. По двум длинным параллельным проводам, расстояние между которыми , текут одинаковые токи . Определить индукцию В и напряженность Н магнитного поля в точке, удаленной от каждого провода на расстояние , если токи текут: а) в одинаковом направлении; б) в противоположных направлениях.

4.12. Два бесконечно длинных прямых проводника скрещены под прямым углом. По проводникам текут токи  и . Расстояние между проводниками . Определить индукцию магнитного поля в точке, лежащей на середине общего перпендикуляра к проводникам.

4.13. По проводнику, согнутому в виде прямоугольника со сторонами

 и , течет ток силой . Определить напряженность H и индукцию В магнитного поля в точке пересечения диагоналей прямоугольника.

4.14. По контуру в виде равностороннего треугольника идет ток силой

. Сторона треугольника . Определить магнитную индукцию В в точке пересечения высот.

4.15. Ток силой  идет по проводнику, согнутому под прямым углом. Найти напряженность магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстояние . Считать, что оба конца проводника находятся очень далеко от вершины угла.

4.16. Магнитная стрелка помещена в центре кругового витка, плоскость которого расположена вертикально и составляет угол  с плоскостью магнитного меридиана. Радиус окружности . Определить угол, на который повернется магнитная стрелка, если по проводнику пойдет ток силой   (дать два ответа). Горизонтальную составляющую индукции земного магнитного поля принять равной .

4.17. По проводнику, изогнутому в виде окружности, течет ток. Напряженность магнитного поля в центре окружности . Не изменяя силы тока в проводнике, ему придали форму квадрата. Определить напряженность магнитного поля в точке пересечения диагоналей этого квадрата.

4.18. Проволочный виток радиусом  расположен в плоскости магнитного меридиана. В центре витка установлена небольшая магнитная стрелка, могущая вращаться вокруг вертикальной оси. На какой угол отклонится стрелка, если по витку пустить ток силой ? Горизонтальную составляющую индукции земного магнитного поля принять равной .

4.19. Обмотка катушки сделана из проволоки диаметром 0,8 мм. Витки плотно прилегают друг к другу. Считая катушку достаточно длинной, найти напряженность магнитного поля внутри катушки при силе тока .

4.20. Бесконечно длинный провод образует круговую петлю, касательную к проводу. По проводу идет ток силой . Найти радиус петли, если известно, что напряженность магнитного поля в центре петли равна .

4.21. Рамка площадью  равномерно вращается с частотой  относительно оси , лежащей в плоскости рамки и перпендикулярной линиям индукции однородного магнитного поля (). Определить среднее значение э.д.с. индукции за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения.

4.22. Рамка, содержащая  витков площадью  равномерно вращается с частотой  в магнитном поле напряженностью . Ось вращения лежит в плоскости рамки и перпендикулярна линиям напряженности. Определить максимальную э. д. с. индукции, возникающую в рамке.

4.23. Соленоид диаметром , имеющий  витков, помещен в магнитное поле, индукция которого изменяется со скоростью . ось соленоида составляет с вектором магнитной индукции угол . Определить э.д.с. индукции, возникающей в соленоиде.

4.24. В магнитное поле, изменяющееся по закону , помещена квадратная рамка со стороной , причем нормаль к рамке образует с направлением поля угол . Определить э.д.с. индукции, возникающую в рамке в момент времени .

4.25. В однородном магнитном поле напряженностью , равномерно с частотой  вращается стержень длиной  так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить индуцируемую на концах стержня разность потенциалов.

4.26. Соленоид содержит  витков. Сечение сердечника (из немагнитного материала) . По обмотке течет ток, создающий поле с индукцией . Определить среднее значение э.д.с. самоиндукции, которая возникает на зажимах соленоида, если ток уменьшается практически до нуля за  время

4.27. Кольцо из алюминиевого провода () помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца , диаметр провода . Определить скорость изменения магнитного поля, если ток в кольце

4.28. Через катушку, индуктивность которой равна , протекает ток, изменяющейся по закону . Определить максимальное значение э.д.с. самоиндукции.

4.29. В однородном магнитном поле индукцией  вращается с частотой  стержень длиной . Ось вращения параллельна линиям индукции и проходит через середину стержня, перпендикулярно к его оси. Определить разность потенциалов на концах стержня.

4.30. В однородном магнитном поле, индукция которого , равномерно вращается рамка с угловой скоростью . Площадь рамки . Ось вращения находится в плоскости вращения рамки и составляет 300 с направлением силовых линий магнитного поля. Найти максимальную э.д.с. индукции во вращающейся рамке.

4.31. Индуктивность L соленоида, намотанного в один слой на немагнитный каркас, равна 0,2 мГн. Длина соленоида , диаметр . Определить число витков п, приходящихся на единицу длины соленоида.

4.32. На длинный картонный каркас диаметром  уложена однослойная обмотка (виток к витку) из проволоки диаметром . Определить магнитный поток Ф, создаваемый таким соленоидом при силе тока .

4.33. Виток радиусом , по которому течет ток силой , свободно установился в однородном магнитном поле напряженностью

. Виток повернули относительно диаметра на угол . Определить совершенную работу.

4.34. Тороид диаметром (по средней линии)  и площадью сечения  содержит  витков. Вычислить энергию магнитного поля тороида при силе тока . Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.

4.35. Определить плотность ω энергии магнитного поля в центре кольцевого проводника, имеющего радиус  и содержащего  витков. Сила тока в проводнике .

4.36. Соленоид сечением  содержит  витков. Индукция В магнитного поля внутри соленоида при силе тока  равна . Определить индуктивность L соленоида.

4.37. В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью . Поддерживая в контуре постоянную силу тока , его переместили из поля в область пространства, где поле отсутствует. Определить индукцию B магнитного поля, если при перемещении контура была совершена работа .

4.38. Соленоид содержит  витков. При силе тока  магнитный поток . Определить энергию W магнитного поля соленоида. Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.

4.39. Обмотка соленоида содержит  витков на каждый сантиметр длины. При какой силе тока объемная плотность энергии магнитного поля будет равна ? Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.

4.40. Плоский контур с током силой  свободно установился в однородном магнитном поле с индукцией . Площадь контура . Поддерживая ток в контуре неизменным, его повернули относительно оси, лежащей в плоскости контура, на угол . Определить совершенную при этом работу.

. Матвеев А.Н. Механика и теория относительности. М.: Высшая школа, 1986. 208 с. 2. Епифанов Г.И., Мома Ю.А. Твердотельная электроника. М.: Высшая школа, 1986. 317 с. 3. Чертов А.Г. Единицы физических величин. М.: Высшая школа, 1977. 4. Диденко А.Я. , Филиппов В.П. Сборник задач по физике. Ч. 2. М.: ЦНИИатоминформ, 1992. 96 с.
Физика примеры решения задач