Физика задачи. Механика

Начертательная геометрия
и инженерная графика
Начертательная геометрия
Задание по инженерной графике
Геометрические характеристики
плоских сечений
Построение геометрических фигур
Контрольная работа по
инженерной графике
Практикум по черчению
Оформление чертежей
Построения черчежа
Позиционные задачи

Основы машиностроительного черчения

Черчение Практикум по решению задач
Построение касательной
История искусства
Архитектура и скульптура Западной Европы
Живопись Франции
Барбизонская школа
Эдуард Мане
Импрессионизм
Неоимпрессионизм
Постимпрессионизм
Живопись Германии
Живопись Англии
Галерея Тейт в Лондоне
Искусство России
Архитектура и скульптура
Живопись
Иван Айвазовский
Василий Поленов
Василий Суриков
Исаак Левитан

Государственная Третьяковская галерея

Сопромат
Сопротивление материалов
Задачи по сопротивлению материалов
Теоретическая механика
Лабораторные работы по
сопротивлению материалов
Контрольная работа по сопромату
Лекции по черчению,
начертательной геометрии
Вычерчивание контуров деталей
Аксонометрическая проекция
Тени цилиндра
Конические сечения
Математика решение задач
Вычисление объемов с помощью
тройных интегралов
Основы векторной алгебры
Аналитическая геометрия
Решение типового варианта контрольной работы
Курсовая по математике
Вычисления интегралов
Интегралы при решении задач
Физика
Лекции и конспекты
Физика примеры решения задач
Механика
Термодинамика
Молекулярная физика
Электростатика и постоянный ток
Электромагнетизм
Электромагнитная индукция
Теория электромагнитного поля
Геометрическая оптика
Радиоактивность. Элементы физики ядра
Электротехника
Схемы выпрямителей, фильтров
MATLAB приложение Simulink
Курсовая по ТОЭ
Примеры выполнения заданий
Курс лекций по ТОЭ и типовые задания
Линейные электрические цепи
Резонанс в электрических цепях
Несинусоидальные токи
Расчет переходных процессов
Теория нелинейных цепей
Переходные процессы в нелинейных цепях
Лабораторные работы и расчеты по ТОЭ
Исследование переходных процессов
Моделирование электрических цепей
Задание на курсовую работу
Расчет переходного процесса в цепях
первого порядка
Использование программы Mathcad
Исследование  трёхфазных цепей
Исследование сложной электрической цепи постоянного тока
Исследование  трёхфазных цепей при соединении сопротивлений нагрузки
в треугольник
Информатика
Школьный учебник по информатике
Графический пакет AutoCAD
Adobe Illustrator
Инструменты
Векторные фильтры
Цветовые фильтры
Работа с текстом и шрифтом
Информационная графика
Учебник по Microsoft Internet Explorer
Основы безопасной работы с ресурсами сети
Microsoft Outlook
Компьютерные сети
Вычислительные сети
Основные проблемы построения сетей
Понятие «открытая система» и проблемы стандартизации
Локальные и глобальные сети
Сети отделов, кампусов и корпораций
Требования, предъявляемые к современным вычислительным сетям
Основы передачи дискретных данных
Методы передачи дискретных данных на физическом уровне
Методы передачи данных канального уровня
Методы коммутации
Базовые технологии локальных сетей
Протокол LLC уровня управления логическим каналом (802.2)
Технология Ethernet (802.3)
Технология Token Ring (802.5)
Технология FDDI
Fast Ethernet и 100VG - AnyLAN как развитие технологии Ethernet
Высокоскоростная технология Gigabit Ethernet
Построение локальных сетей по стандартам физического и канального уровней
Концентраторы и сетевые адаптеры
Логическая структуризация сети с помощью мостов и коммутаторов
Техническая реализация и дополнительные функции коммутаторов
Сетевой уровень как средство построения больших сетей
Адресация в IP-сетях
Протокол IP
Протоколы маршрутизации в IP-сетях
Средства построения составных сетей стека Novell
Маршрутизаторы
Глобальные сети
Глобальные связи на основе выделенных линий
Глобальные связи на основе сетей с коммутацией каналов
Компьютерные глобальные сети с коммутацией пакетов
Удаленный доступ
Средства анализа и управления сетями
Мониторинг и анализ локальных сетей
Ядерная индустрия
История ядерной индустрии
Урановый проект
Попытка создать атомное оружие в Германии
США применила атомные бомбы
Атомная индустрия в Великобритании
Проектирование ядерного реактора Франция
Развитие ядерной индустрии в СССР
Урановый проект СССР в годы войны
Проектирование атомной подводной лодки
Первая в мире атомная электростанция
Атомный ледоход"Ленин"
Путешествие советской атомной подводной лодки на Северный полюс
Атомные двигатели для космоса
Курчатовский институт
Ядерные реакторы
Компоновка реакторного контура
Реактор ВВЭР
Реактор РБМК
Реакторная установка МКЭР -1500
Газоохлаждаемые реакторы
Атомные электростанции с натриевым теплоносителем
АЭС с реактором БН-350
Цепная ядерная реакция
Термоядерный синтез
Реакторы на быстрых нейтронах
Варианты  плавучего энергоблока и опреснительных установок
Радиационная и ядерная безопасность
Обеспечение защиты населения
 

Пример1. Колесо вращается с постоянным угловым ускорением

Пример 3. Через неподвижный блок массой  перекинут шнур, к концам которого подвешены грузы массами  и .

Пример 4. На краю горизонтальной платформы, имеющей форму диска радиусом , стоит человек. Масса платформы , масса человека . Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль ее края со скоростью   относительно платформы.

Пример 6. На концах стержня массой 1 кг и длиной 40 см укреплены одинаковые грузы массами 400 г по одному на каждом конце. Стержень с грузами колеблется около оси, проходящей через точку, удаленную на 10 см от одного из концов стержня. Определить период колебаний стержня.

Законы и формулы к выполнению задач по теме №1

Кинематика

Поступательное движение

Уравнение движения материальной точки (или центра масс абсолютно твердого тела), движущейся равномерно вдоль оси x: , (1.1)

движущейся равноускоренно вдоль оси x: . (1.2)

Для прямолинейного движения разность между конечной (x) и начальной (x0) координатами тела равна пройденному пути S.

Закон изменения скорости при равноускоренном движении:

. (1.3)

Здесь  и   – скорость тела в начальный момент времени и в момент времени t соответственно, a – линейное ускорение.

Средняя путевая скорость:

, (1.4)

где ΔS – величина пути, пройденного телом за интервал времени Δt.

Тангенциальное ускорение:

. (1.5)

Нормальное ускорение:

, (1.6)

где R – радиус кривизны траектории.

Полное ускорение:

. (1.7)

Вращательное движение

Уравнение движения материальной точки (или центра масс абсолютно твердого тела), движущейся равноускоренно по окружности радиуса R:

. (1.8)

Закон изменения скорости при равноускоренном движении:

. (1.9)

Здесь Δφ – угол поворота тела за время t, ω0 и ω – угловые скорости тела в начальный момент времени и в момент времени t соответственно, ε – угловое ускорение.

Угловая скорость ω связана:

с линейной скоростью , (1.10)

с линейной частотой ν: , (1.11)

с периодом колебаний Т: . (1.12)

Угловое ускорение ε связано с тангенциальной составляющей линейного ускорения aτ соотношением

. (1.13)

Угловая скорость ω связана с нормальной составляющей линейного ускорения an соотношением

. (1.14)

Динамика

Поступательное движение

Второй закон Ньютона:

. (1.15)

 – геометрическая сумма сил, действующих на тело, m – масса тела.

Третий закон Ньютона:

, (1.16)

где  – сила, действующая на первое тело со стороны второго, а  – сила, действующая на второе тело со стороны первого.

Силы в механике:

сила упругости , где x – величина упругой деформации тела, k – коэффициент упругости;

сила тяжести , где  – ускорение свободного падения;

сила трения (скольжения) , где μ – коэффициент трения,

N – сила нормального давления (сила реакции опоры).

Импульс материальной точки (твердого тела) массой m:

. (1.17)

Закон сохранения импульса изолированной системы тел:

. (1.18)

Кинетическая энергия тела:

. (1.19)

Потенциальная энергия:

упругодеформированной пружины , (1.20)

где k – жесткость пружины, x – величина деформации;

тела, находящегося в однородном поле силы тяжести , (1.21)

где h – высота тела над уровнем, принятым за нулевой (имеется при этом в виду, что h<<R, где R – радиус Земли).

Закон сохранения механической энергии:

, (1.22)

где E – полная энергия изолированной системы.

Работа постоянной силы:

, (1.23)

где S – перемещение тела под действием силы F, α – угол между направлением силы и направлением перемещения.

Связь работы сил, действующих на тело, и кинетической энергии тела:

, (1.24)

где ΔE – изменение полной энергии системы под действием внешних сил.

Вращательное движение

Модуль момента силы относительно неподвижной точки О:

, (1.25)

где r – модуль радиус-вектора, проведенного из точки О, через которую проходит ось вращения в точку приложения силы F; α – угол между радиус-вектором и вектором силы. Направление вектора момента силы совпадает с направлением поступательного движения правового винта при его вращении от  к .

Основной закон динамики вращательного движения:

, (1.26)

где J – момент инерции тела относительно оси вращения,  – угловое ускорение.

Момент инерции относительно оси, проходящей через центр масс для:

полого цилиндра (обруча) радиусом R ; (1.27)

сплошного цилиндра (диска) радиусом R ; (1.28)

прямого тонкого стержня длиной l ; (1.29)

шара радиусом R . (1.30)

Кинетическая энергия тела, вращающегося вокруг неподвижной оси:

, (1.31)

где ω – угловая скорость.

Кинетическая энергия катящегося тела:

. (1.32)

Примеры решения задач по теме №1

Пример 1.1. Самолет движется со скоростью 18 км/ч. С некоторого момента он начинает двигаться с ускорением a в течение 10 с, а последние 110 м проходит за одну секунду. Определить ускорение и конечную скорость самолета.

Дано: =18 км/ч=5м/с,

t1=10 с,

t2=1 с,

S2=110 м.

Найти: a,

Решение


Весь путь, проделанный самолетом, делится на два S1 и S2 (рис.1).

Рис. 1.

Запишем для двух этих участков уравнения движения:

; (1.1.1)

 (1.1.2)

и законы изменения скорости:

; (1.1.3)

. (1.1.4)

Подставим (1.1.3) в (1.1.2):

. (1.1.5)

Выразим a:

. (1.1.6)

Подставим в (1.1.6) числовые данные:

.

Теперь подставим (1.1.3) в (1.1.4) и вычислим конечную скорость:

.

Ответ: ускорение самолета a=10м/с2, конечная скорость самолета =115м/с.

Пример 1.2. Колесо вращается с частотой 180об/мин. С некоторого момента колесо начинает вращаться равнозамедленно с угловым ускорением 3 рад/с2. Через какое время колесо остановится? Найти число оборотов колеса до остановки.

Дано: ν = 180об/мин=3об/с,

ε = 3 рад/с2.

Найти: t, n.

Решение

Запишем уравнение движения тела, совершающего равноускоренное, вращательное движение:

 (1.2.1)

и закон изменения скорости

. (1.2.2)

Здесь Δφ – угол поворота тела за время t, ω0 и ω – угловая скорость тела в начальный момент времени и в момент времени t соответственно, ε – угловое ускорение.

Угол поворота Δφ связан с числом оборотов n соотношением:

. (1.2.3)

Начальную угловую скорость ω0 найдем из соотношения:

. (1.2.4)

С учетом (1.2.3) и (1.2.4), а также с учетом того, что колесо движется равнозамедленно, перепишем (1.2.1):

. (1.2.5)

Из уравнения (1.2.2) найдем время до остановки колеса, т.е. время, когда угловая скорость ω стала равна нулю:

. (1.2.6)

Рассчитаем время t:

.

Теперь подставим (1.2.6) в (1.2.5):

. (1.2.7)

Выразим из (1.2.7) число оборотов n и подставим числовые данные:

.

Ответ: колесо остановится через 6,28 с; число оборотов n=9,4 оборота.

Пример 1.3. Шар массой 2 кг, движущийся горизонтально со скоростью =4 м/с, столкнулся с неподвижным шаром массой 3 кг. Считая удар центральным и абсолютно неупругим, найти количество теплоты, выделившееся при ударе.

Дано: m1 = 2 кг,

m2 = 3 кг,

 = 4 м/с,

 = 0 м/с.

Найти: Q.

Решение

Запишем закон сохранения импульса:

. (1.3.1)

Здесь  и   – скорости первого и второго шаров до удара соответственно, u1 и u2 – скорости первого и второго шаров после удара соответственно. После неупругого столкновения тела движутся с одинаковой скоростью, поэтому  u1 = u2 = u. Запишем проекцию уравнения (1.3.1) на направление движения шаров с учетом того, что =0 м/с:

. (1.3.2)

При неупругом ударе закон сохранения энергии не выполняется. Разность между энергией системы до удара (ЕК1) и энергией после удара (ЕК2) равна количеству теплоты, выделившемуся при ударе:

. (1.3.3)

Кинетическая энергия системы до удара:

. (1.3.4)

Кинетическая энергия системы после удара:

. (1.3.5)

Выразим из (1.3.2) u и подставим в (1.3.5):

. (1.3.6)

С учетом (1.3.4) и (1.3.6) вычислим количество теплоты Q:

.

Ответ: количество теплоты, выделившееся при ударе Q=9,6 Дж.

Пример 1.4. На барабан радиусом 0,5 м намотан шнур, к концу которого привязан груз массой 12 кг. Найти момент инерции барабана, если груз опускается с ускорением 1,81 м/с2. Барабан считать однородным цилиндром. Трением пренебречь.

Дано: R=0,5м,

m=12 кг,

a=1,81 м/с2.


Найти: J.

Решение

Рис. 2

Запишем основной закон динамики вращательного движения:

. (1.4.1)

Здесь J – момент инерции цилиндра относительно оси вращения, проходящей через центр масс, ε – угловое ускорение (ускорение вращательного движения), M – момент силы, заставляющей барабан вращаться. Такой силой является сила натяжения шнура Т.

Модуль момента силы равен:

. (1.4.2)

Из рис. 2 видно, что α=900, поэтому:

. (1.4.3)

Угловое ускорение ε связано с линейным ускорением a соотношением:

, (1.4.4)

где R – радиус барабана.

С учетом (1.4.3) и (1.4.4) перепишем (1.4.1) в скалярном виде (вектор М и вектор ε направлены в одну сторону):

. (1.4.5)

Выразим из (1.4.5) J:

. (1.4.6)

Силу натяжения шнура Т найдем из второго закона Ньютона, записанного для поступательно движущегося груза (рис. 2):

. (1.4.7)

Сила натяжения шнура, вращающая барабан и сила, действующая на груз, равны по модулю и направлены в противоположные стороны. Проекция уравнения (1.4.7) на ось OY имеет вид:

. (1.4.8)

Выразим из (1.4.8) Т и подставим полученное выражение в (1.4.6):

. (1.4.9)

Проверим размерность:

.

Подставим в (1.4.9) числовые данные:

.

Ответ: момент инерции барабана J=12 м2кг.