Основы векторной алгебры Аналитическая геометрия Линейная алгебра примеры задач Графические методы решения задач Построения на изображениях Примеры решения типовых задач: матрицы Найти произведение матриц Метод Гаусса

Математика Основы векторной алгебры Аналитическая геометрия Линейная алгебра примеры задач

Поверхности второго порядка

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии. Здесь же мы ограничимся определениями и иллюстрациями.

Определение 5.12. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, c  > 0, называется эллипсоидом .

1
Рисунок 5.7.1. Приложения двойного интеграла. Вычисление площадей плоских областей Математика примеры решения заданий курсовой работы

Свойства эллипсоида.

    Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует

    Эллипсоид обладает

    В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс. Показательные и логарифмические уравнения

2
Рисунок 5.7.2.

Определение  5.13. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется эллиптическим параболоидом .

Свойства эллиптического параболоида.

    Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z  ≥ 0 и принимает сколь угодно большие значения.

    Эллиптический параболоид обладает

    В сечении эллиптического параболоида плоскостью, ортогональной оси Oz , получается эллипс, а плоскостями, ортогональными осям Ox и Oy – парабола.

Определение 5.14. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется гиперболическим параболоидом .

3
Рисунок 5.7.3.

Свойства гиперболического параболоида. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число. Гиперболический параболоид обладает осевой симметрией относительно оси Oz , плоскостной симметрией относительно координатных плоскостей Oxz и Oyz . В сечении гиперболического параболоида плоскостью, ортогональной оси координат Oz , получается гипербола, а плоскостями, ортогональными осям Ox и Oy , – парабола.

Понятие объема в пространстве вводится аналогично понятию площади для фигур на плоскости.

Матрицы. Операции над матрицами

Прямоугольной матрицей размера m´n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов

Пример . Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1, Т 2, Т 3, Т 4. В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Определители Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего Свойства определителей

Контрольная работа

Задание 1. Выполнить действия с матрицами: .

Задание 2. Вычислить определитель матрицы: .

Задание 3. Определить, имеет ли матрица  обратную, и, если имеет вычислить ее: .


Математика Интегралы при решении задач