Геометрия
Практикум
Математика
Лекции
Графика
Сопромат
Алгебра
Физика

Контрольная

Задачи
Типовой
На главную
Черчение
Механика
Курсовая
Электротехника

Математика Основы векторной алгебры Аналитическая геометрия Линейная алгебра примеры задач

Касания круглых тел с прямой и плоскостью

Прямая, касающаяся сферы – это прямая, которая имеет единственную общую точку со сферой. Примеры решения типовых задач Интегральное исчисление функций нескольких переменных Курс практики по математике

Аналогично можно ввести понятие касательной прямой к поверхности конуса (цилиндра) , однако при этом рассматриваются прямые, не проходящие через точки на основании конуса (цилиндра) и через вершину конуса.

Так же несложно определяются понятия двух касающихся сфер и сферы, касающейся боковой поверхности конуса . Однако при решении задач, в которых фигурируют эти объекты, нужно быть предельно внимательным, поскольку существует два вида касания: внутреннее и внешнее .

Рисунок 5.5.3. Если функция определена на отрезке и монотонна, то она интегрируема на нем.

.

Рисунок 5.5.4

Задание 4. Вычислить ранг матрицы .

Решение. Матрица имеет четыре столбца и три строки, поэтому . Кроме того, матрица содержит столбец с нулевыми элементами, и все миноры 3-го порядка будут содержать этот нулевой столбец, кроме одного. Вычислим его: {Преобразуем так, чтобы в третьей строке все элементы, кроме находящегося во втором столбце, были нулевыми. Умножим элементы второго столбца на 2 и сложим с элементами первого столбца. Затем умножим элементы второго столбца на (-3) и сложим с элементами третьего столбца. Разложим по элементам третьей строки} .

Все миноры 3-го порядка равны нулю, следовательно, . Достаточно найти хотя бы один минор 2-го порядка, отличный от нуля, например, . Нашли минор 2-го порядка отличный от нуля, так как все миноры более высокого порядка равны нулю, то делаем вывод, что . Ответ: .


Ядерные реакторы

Сети