Основы векторной алгебры Аналитическая геометрия Линейная алгебра примеры задач Декартова система координат Понятие числовой функции Построение графика Квадратный трехчлен тригонометрические функции

Математика Основы векторной алгебры Аналитическая геометрия Линейная алгебра примеры задач

Обратные тригонометрические функции

График 2.3.4.1. График 2.3.4.2. Арксинусом x называют такое число , что sin  t  =  x . Из определения следует, что

При помощи арксинуса решение уравнения sin  x  =  t записывается следующим образом: или t  = (–1) n  arcsin  x  + π n

Функция y  = arcsin  x определена и непрерывна на отрезке [–1; 1]. Ее областью значений является отрезок Она обратна функции y  = sin  x , рассматриваемой на отрезке и поэтому монотонно возрастает. Функция y  = arcsin  x является нечетной.

Арккосинусом x называют такое число 0 ≤  t  ≤ π, что cos  t  =  x . Из определения следует, что

При помощи арккосинуса решение уравнения cos  x  =  t записывается следующим образом: t  = ±arccos  x  + 2π n Найти объем тела W, заданного ограничивающими его поверхностями

Функция y  = arccos  x определена и непрерывна на отрезке [–1; 1]. Ее областью значений является отрезок [0; π]. Она обратна функции y  = cos  x , рассматриваемой на отрезке [0; π], и поэтому монотонно убывает на области определения. Функция y  = arccos  x не является ни четной, ни нечетной.

Арктангенсом x называют такое число , что tg  t  =  x . При помощи арктангенса решение уравнения tg  x  =  t записывается следующим образом: t  = arctg  x  + π n Функция y  = arctg  x является нечетной.

График 2.3.4.3. График 2.3.4.4.

Арккотангенсом x называют такое число 0 ≤  t  ≤ π, что ctg  t  =  x . При помощи арккотангенса решение уравнения ctg  x  =  t записывается следующим образом: t  = arcctg  x  + π n Функция y  = arcctg  x не является ни четной, ни нечетной.

Функции y  = arctg  x и y  = arcctg  x определены и непрерывны на всей числовой оси. Их областями значений являются, соответственно, интервалы и (0; π). Арктангенс монотонно возрастает, а арккотангенс монотонно убывает на всей области определения. Функциями, обратными к данным, являются соответственно tg  x на и ctg  x на (0; π).

Модель 2.13. Простейшие тригонометрические уравнения.

Из определения обратных тригонометрических функций следуют некоторые тождества.

 

 

 

 

 

 

 

Степенная функция с натуральным показателем непрерывна на множестве действительных чисел. Если n нечетное, то эта функция строго возрастает и потому обратима. Обратной к ней является функция Степенная функция с четным показателем необратима

В природе и жизни человека встречается большое количество процессов, в которых некоторые величины изменяются так, что их отношение данной величины через равные промежутки времени не зависит от времени. Среди таковых можно назвать радиоактивный распад веществ, рост суммы на счету в банке и др. Все эти процессы описываются показательной функцией.

Пример . Вычислить определитель из предыдущего примера Решение: Задача состоит в том, чтобы получить как можно больше нулей в какой-нибудь из строк или столбцов, и, затем разложить по этой строке (столбцу) определитель. Получим нуль в первой строке в первом столбце. Для этого умножим элементы четвертого столбца на (-1) и сложим с элементами первого столбца, при этом определитель не изменится

На промежутке (0; +∞) определена функция, обратная к a x ( a  > 0, a  ≠ 1). Эта функция называется логарифмической : y  = log a   x

Функция называется гиперболическим синусом . Функция называется гиперболическим косинусом .

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе.

Задача 2.16

Найти точку пересечения плоскости  с прямой, заданной каноническими уравнениями:.

Решение: Можно было бы перейти от канонических уравнений к общему виду и свести задачу к рассмотренной в предыдущем примере. Но можно рассуждать и по-другому. Точка пересечения должна принадлежать и прямой и плоскости, то есть можно подставить выражения для  из канонического уравнения в уравнение плоскости и определить их.

Перейдем к параметрическим уравнениям прямой:

, откуда , , .

Подставим найденные выражения в уравнение плоскости:

, откуда .

Подставляем в выражения для , находим ответ: , , . Ответ: искомая точка .


Математика Примеры решения типовых задач: