Задачи по сопротивлению материалов Геометрические характеристики плоских сечений Лабораторные работы по сопротивлению материалов Контрольная работа Определение перемещений при косом изгибе Расчет заклепок на срез

Сопромат Задачи и лабораторные работы

Кручение бруса с некруглым поперечным сечением

Определение напряжений в брусе с некруглым поперечным сечением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипотеза плоских сечений, оказывается неприемлемой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.

Таким образом, при определении углов сдвига, в данном случае, необходимо учитывать не только взаимный поворот сечений, но и деформации сечений в своей плоскости, связанная с искривлением сечений.

Задача резко усложняется тем, что для некруглого сечения, напряжения должны определяться как функции уже не одного независимого переменного , а двух - x и y.

Отметим некоторые особенности законов распределения напряжений в поперечных сечениях некруглой формы. Если поперечное сечение имеет внешние углы, то в них касательные напряжения должны обращаться в нуль. Если наружная поверхность бруса при кручении свободна, то касательные напряжения в поперечном сечении, направленные по нормали к контуру также будут равны нулю.

На рис. 4.3 показана, полученная методом теории упругости, эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как видно, напряжения равны нулю, а наибольшие их значения возникают по серединам больших сторон:

в точке А

, (5.16)

где - момент сопротивления при кручении, аналог полярного момента сопротивления поперечного сечения прямоугольного бруса;

Рис. 5.13

в точке В 

, (5.17)

здесь необходимо учесть, что b - малая сторона прямоугольника.

Значения угла закручивания определяется по формуле:

, (5.18)

где - момент инерции при кручении, аналог полярного момента инерции поперечного сечения бруса.

Коэффициенты , и зависят от отношения сторон , и их значения приведены в табл. 4.1.

Таблица 4.1. Значения коэффициентов для прямоугольных сечений

1,0

0,208

0,140

1,0

1,2

0,219

0,166

-

1,4

0,228

0,187

0,865

1,6

0,234

0,204

0,845

1,8

0,240

0,217

-

2,0

0,246

0,229

0,796

2,5

0,258

0,249

-

3,0

0,267

0,263

0,753

4,0

0,282

0,281

0,745

6,0

0,299

0,299

0,743

8,0

0,307

0,307

0,743

10,0

0,313

0,313

0,743

Более 10

0,333

0,333

0,743

 

Значения , и для различных сечений приведены в табл.4.2.

Таблица 4.2. Геометрические характеристики жесткости и прочности для

некоторых сечений при кручении прямого бруса

Сдвиг

Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса (рис.5.14) под действием касательных напряжений . Развитие этой деформации приводит к разрушению, называемому срезом или, применительно к древесине, скалыванием. Примером сдвига является резка полосы ножницами. На сдвиг работают жесткие соединения конструкций – сварные, заклепочные и так далее.

Деформация сдвига оценивается взаимным смещением граней 1 – 1 и 2 – 2 малого элемента (рис. 5.15), называемым абсолютным сдвигом и более полно – относительным сдвигом (углом сдвига)

, (5.19)

являющимся безразмерной величиной.

В предположении равномерного распределения касательных напряжений по сечению площадью А, они определяются по формуле

, (5.20)

где Q – поперечная сила в данном сечении.

Условие прочности записывается по минимальной площади среза Smin, отражающей минимальное число соединяющих элементов (заклепок, болтов, штифтов и т.д.) или минимальную длину сварного шва.

Величина допускаемых напряжений зависит от свойств материала, характера нагрузки и может быть определена по 3-ей теории прочности: , а так как при чистом сдвиге , то

,  (5.21)

При расчете болтовых или заклепочных соединений учитывается смятие контактирующих поверхностей, то есть пластическую деформацию, возникающую на поверхности контакта.

,

где Aсм – площадь проекции поверхности контакта на диаметральную плоскость.

При выполнении проектного расчета, то есть при определении необходимого диаметра заклепки, болта или при определении их количества необходимо учитывать условие прочности на срез и на смятие, из двух значений следует взять большее число, округлив его до ближайшего целого в меньшую сторону.

Примечания: 1. Так как болты и заклепки ослабляют соединяемые листы, последние проверяют на разрыв в ослабленных сечениях

.

При расчетах сварных швов наплывы не учитывают, а считают, что в разрезе угловой шов имеет форму прямоугольного равнобедренного треугольника и разрушение шва происходит по его минимальному сечению, высота которого

,

где – минимальная толщина соединяемых листов.

В пределах упругости касательное напряжение прямо пропорционально относительному сдвигу

(5.22)

– это закон Гука при сдвиге; G – модуль сдвига, Н/м2, характеризующий жесткость материала при сдвиге.

Закон Гука при сдвиге через абсолютные деформации:

, (5.23)

где а – расстояние между сдвигаемыми гранями; А – площадь грани.

Модуль сдвига G, модуль продольной упругости Е и коэффициент Пуассона материала связаны зависимостью

Удельная потенциальная энергия деформации сдвига равна

На практике чаще всего теория сдвига применяется к расчету болтов, заклепок, шпонок, сварных швов и других элементов соединений.


Расчеты на растяжение и сжатие