Задачи по сопротивлению материалов Геометрические характеристики плоских сечений Лабораторные работы по сопротивлению материалов Контрольная работа Определение перемещений при косом изгибе Расчет заклепок на срез

Сопромат Задачи и лабораторные работы

Моменты инерции простых сечений

Вычислим моменты инерции простейших фигур.

Прямоугольник

Определим моменты инерции относительно осей, совпадающих со сторонами, и относительно центральных осей.

По определению .

Рис. 4.8

Элемент площади равен dA = bdy,

следовательно .

По формуле , откуда, учитывая что А = bh, yc = 0,5h, находим

.

Аналогично получим и .

Треугольник

Момент инерции относительно оси х, cовпадающей с основанием,

.

Но dA = b(y)dy, b(y) = (b/h)(h-y).

Cледовательно,

.

Рис. 4.9

По формуле параллельного переноса , откуда .

Круг

Для любых центральных осей , поэтому .

Как известно, полярный момент инерции круга равен .

Рис. 4.10

Следовательно, .

Кольцо ().

Момент инерции относительно оси (рис.4.11) можно определить как разность моментов инерции наружного и внутреннего круга:

.

Для тонкого кольца существует приближенная формула , где dср – средний диаметр, t - толщина кольца.

Рис. 4.11

Моменты инерции сечений сложной формы

Момент инерции сечения сложной формы относительно некоторой оси равен сумме моментов инерций его составных частей относительно той же оси:

, (13)

что непосредственно следует из свойств определенного интеграла. Таким образом, для вычисления момента инерции сложной фигуры надо разбить ее на ряд простых фигур, вычислить моменты инерции этих фигур, а затем просуммировать их.

Пример.

Определить момент инерции сечения, показанного на рис. 4.12, относительно оси симметрии, a=10 см.

Рис.4.12

Решение.

Разбиваем заданное сечение на простейшие элементы: I - Равнобедренный треугольник, II - прямоугольник, III - круг.

Момент инерции сложной фигуры относительно оси z согласно формуле (13):

.

Определяем моменты инерции слагаемых простейших элементов:

Для равнобедренного треугольника:

;

для прямоугольника согласно формуле:

;

для круга согласно формуле:

.

Окончательно получим:

Iz=4,0a4+10,67a4-0,0491a4=14,6a4=14,6×104=1,46×105 см4.


Расчеты на растяжение и сжатие