Задачи по сопротивлению материалов Геометрические характеристики плоских сечений Лабораторные работы по сопротивлению материалов Контрольная работа Определение перемещений при косом изгибе Расчет заклепок на срез

Сопромат Задачи и лабораторные работы

Опытная проверка теории внецентренного растяжения

(сжатия)

Цель работы – опытное определение величин нормальных напряжений при внецентренном растяжении или сжатии стержня и сравнение их с расчетными значениями.

11.4.1. Применяемые машины и приборы

Опыты проводятся на универсальных испытательных машинах, описание которых дано в п. 10.1.1 и др.

Измерение деформаций производится с помощью рычажных тензометров.

11.4.2. Содержание работы

 В работе испытанию на растяжение или сжатие в пределах упругости подвергается образец из заранее выбранного материала.

Ниже рассматривается вариант работы, когда испытанию на растяжение подвергается стальной образец прямоугольного поперечного сечения (рис. 11.4.1), причем нагрузка равными ступенями прикладывается с некоторым эксцентриситетом е по одной оси относительно центра сечения. Рычажными тензометрами Т1, Т2, Т3, располагающимися на стержне так, как показано на рис. 11.4.1, замеряются линейные деформации соответствующих волокон на каждой ступени нагружения образца и определяются опытные относительные деформации εоп тех же волокон по формуле

где Δi,ср – среднее приращение показаний соответствующего тензометра (i= 1, 2, 3) на интервале нагрузки; ki – коэффициент увеличения i-го тензометра; Б – база тензометра.

Затем определяются опытные напряжения в указанных точках стержня с использованием закона Гука:

Теоретические значения нормальных напряжений в тех же точках можно найти, исходя из общей формулы для расчета напряжений при внецентренном растяжении

В рассматриваемом здесь частном случае приложения нагрузки к образцу (рис.11.4.2) имеем:

N = F, My = Fe, Mz = 0.

Если учесть координаты точек 1, 2, 3, где закреплены тензометры Т1, Т2 и Т3, и знак изгибающего момента Мy, то формула для напряжений примет следующий вид:

для точки 1:  

(напряжение от силы F – растягивающее, напряжение от действия момента Мy – сжимающее);

для точки 2: 

(напряжение от действия момента равно нулю, так как ось y в случае изгиба моментом Мy является нейтральной);

для точки 3: 

(напряжения от действия и силы F и момента Мy – растягивающие);

осевой момент сопротивления равен Wy = bh2/6.

После определения опытных и расчетных значений нормальных напряжений их необходимо сравнить между собой и найти расхождение, т.е. определить величины

11.4.3. Порядок выполнения работы

Закрепить образец в захватах испытательной машины и установить на нем три тензометра.

Дать небольшую начальную нагрузку и записать начальные отсчеты по тензометрам.

Произвести ступенчатое нагружение стержня, записывая на каждой ступени показания тензометров.

Разгрузить образец до начальной нагрузки и сверить показания тензометров с первоначальными. При значительном расхождении опыт повторить.

Снять нагрузку с образца и обработать опытные данные, определив напряжения в точках 1, 2, 3.

Подсчитать теоретические значения нормальных напряжений в тех же точках.

Сравнить опытные и теоретические значения напряжений, найдя расхождение в их величине.

Теория сложного напряженно-деформированного состояния (НДС) твердого тела

Напряжённое и деформированное состояние частицы тела

Теория НДС ставит своей задачей определение внутренних напряжений, деформаций и перемещений в различных точках деформируемого твёрдого тела произвольной формы и размеров.

Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.

Отнесём тело к координатным осям x, y, z и выделим мысленно из него материальную частицу в виде параллелепипеда или кубика размерами dx, dy, dz (рис. 3.1)

а) б)

Рис. 3.1

Действия отброшенной части тела заменим векторами – напряжениями и разложим их на составляющие по координатным осям.

(1)

где ex, ey, ez - единичные векторы, направленные вдоль координатных осей x, y, z; , , - нормальные напряжения, , , , , - касательные напряжения. У касательных напряжений первый индекс указывает на направление его действия, второй индекс – на нормаль к площадке, на которой оно действует. У нормальных напряжений индекс соответствует одновременно как направлению, так и нормали к площадке их действия. На невидимых на рис. 3.1 гранях частицы действуют такие же, но противоположно направленные напряжения.

Совокупность указанных напряжений полностью характеризует напряжённое состояние частицы тела. Эту совокупность записывают в виде квадратной матрицы

(2)

и называют тензором напряжений Коши. Система напряжений, приложенных к частице тела, должна удовлетворять условиям равновесия. Первые три условия в проекциях на оси x, y, z дают тождества, т.к. на противоположных гранях мы считаем напряжения равными по величине. Остаётся проверить, обращаются ли в нуль суммы моментов всех сил относительно координатных осей. Составим условие равновесия моментов относительно оси х:

откуда следует Аналогично можно составить два уравнения равновесия моментов относительно осей y и z. В результате получим соотношения:

(3)

которые называют законом парности касательных напряжений: на двух взаимно перепендикулярных площадках составляющие касательных напряжений, ортогональные их общему ребру, равны по величине и направлены оба либо к ребру, либо от него. На основании этого закона тензор-матрица напряжений является симметричной относительно главной диагонали, состоящей из нормальных напряжений.


Расчеты на растяжение и сжатие