Задачи по сопротивлению материалов Геометрические характеристики плоских сечений Лабораторные работы по сопротивлению материалов Контрольная работа Определение перемещений при косом изгибе Расчет заклепок на срез

Сопромат Задачи и лабораторные работы

Задача 9.1.1. Найти координаты центра тяжести и вычислить главные моменты инерции для составного сечения, показанного на рис. 2.1.11.

 Решение. Для получения результатов используем приведенную программу для ЭВМ на алгоритмическом языке Фортран-IV. Ввод числовых данных для примеров в этой программе осуществляется от метки (5) до метки (8) включительно. Введем нумерацию прокатных профилей и обозначим швеллер № 20 – 3, двутавр № 20 – 2 и горизонтальную полосу – 1. Используя принятые в программе обозначения, осуществим ввод числовых данных (в программе запись осуществляем в один столбец):

 5 N=3 FIX(2)=1840.

X(1)=10 FIY(2)=115.

Y(1)=0.5 FIXY(2)=0.

A(1)=20.*1. X(3)=10.

FIX(1)=20.*1.**3/12. Y(3)=19.45

FIY(1)=1.*20.**3/12. A(3)=23.4

FIXY(1)=0. FIX(3)=113.

X(2)=10. FIY(3)=1520.

Y(2)=11. 8 FIXY(3)=0.

A(2)=26.8

 Координаты центров тяжести швеллера, двутавра и горизонтальной полосы записаны относительно случайных осей х (рис. 2.1.11) и у/. Ось у/ проходит на расстоянии 10 см от оси у влево.

 Ответ: результаты, выдаваемые ЭВМ на печать: хс = 10 см;

 ус = 10,83см; Iхс = 5828,34 см4; Iус = 2301,67 см4; Iхсус = 0;

Imax = 5828,34 см4; Imin = Iу = 2301,67 см4; tg2α = 0.

 Задача 9.1.2. Вычислить главные моменты инерции для составного поперечного сечения, представленного на рис. 2.1.12. Найти положение главных осей инерции.

 Ответ: результаты, выдаваемые ЭВМ: хс = 11,7 см; ус = 10,83 см;

Iхс = 3710,75 см4; Iус = 2065 см4; Iхсус = –382 см4; Imax = 3795 см4;

Imin = 1981 см4; tg2α = 0,4639.

 Задачи 9.1.3–9.1.10. Применяя приведенную программу на языке Фортран-IV, проверить расчетом на ЭВМ ответы, данные для примеров 2.3.3–2.3.10.

 Задача 9.1.11. Вычислить главные центральные моменты инерции поперечного сечения, показанного на рис. 2.1.13. Найти положение главных осей инерции.

 Ответ: результаты, выдаваемые ЭВМ: х = 7,74 см; ус = 6,76 см;

Iхс = 2241,75 см4; Iус = 545,46 см4; Iхсус = –480,95 см4;

Imax = 2368,63 см4; Imin = 418,58 см4; tg2α = 0,56706.

9.2. Построение эпюр прогибов упругой оси балки

 В разделе 4.4 приводится дифференциальное уравнение изгиба упругой оси балки (4.4.1), интегрируя которое можно найти прогиб произвольного поперечного сечения балки. Удовлетворив граничным условиям, находят произвольные постоянные, в результате чего уравнение упругой оси балки можно записать в виде уi = уi(х), где i – число участков, на которые разбивается балка.

 Построим эпюру прогибов балки, которая рассматривается в задаче 4.4.1, рис. 4.4.2 (глава 4). Балка содержит три участка ,  и . Для каждого участка балки получено уравнение изогнутой оси балки (4.4.8).

 Реализуем процесс построения эпюры прогибов упругой оси балки (рис. 4.4.2) и нахождения максимального прогиба в виде программы для ЭВМ на алгоритмическом языке Фортран-IV.

 Для числового примера примем балку из двутавра № 20 (Iz = 1840 см4; Е = 2,1·106 кг/см2) с а = 1 м, l = 2 м, q = 200 кг/м. Общая длина однопролетной балки L = 4 м.

 Ввод числовых данных осуществляется способом «присвоения» с метки (5) до метки (8) включительно. От метки (9) до метки (16) описывается первый участок (), от метки (20) до метки (26) – второй (), а от метки (30) до метки (36) – третий ().

 В программе используются следующие идентификаторы:

текст

а

l

L

x

y

q

E

Iz

C

D

программа

А

В

FL

X

Y

Q

FE

FI

C

D

 Машина будет выдавать на печать значения прогибов с шагом Δх = =20 см. Изменяя значения параметров AN, AL (см. программу) можно увеличить или уменьшить шаг счета Δх.

 PROGRAM BEAM

 5 A=100.

B=200.

FL=400.

Q=2.

FE=2.1E6

FI=1840.

G=FE*FI

C=Q*((FL–A)**4/(24.*FL)–B*FL*FL/12.-A**4/(24.*FL))/G

 8 D=0.

 9 AN=5.

 X=–A/AN

 12 X=X+A/AN

 IF (X–A) 15, 15, 20

 15 Y=Q*B*X**3/(12.*G)+C*X+D

WRITE (7, 50) X,Y

 16 GO TO 12

20 AL=10.

 X=A–B/AL

 22 X=X+B/AL

 IF (X–A–B) 25, 25, 30

 25 Y=Q*(B*X**3/12. – (X–A)**4/24.)/G+C*X+D

 WRITE (7,50) X,Y

 26 GO TO 22

 30 AN=5

 X=A+B–A/AN

 32 X=X+A/AN

 IF (X-FL) 35, 35, 60

 35 Y=Q*(B*X**3/12.– (X–A)**4/24.+(X–A–B)**4/24.)/G+C*X+D

WRITE (7, 50) X,Y

 36 G0 TO 32

 50 FORMAT (2HX=, F5.1, 3X, 2HY=, E12.4)

 60 STOP

 END

Результаты, выдаваемые ЭВМ на печать:

Х= .0 У= .0000Е+00

Х= 20.0 У= -.1891Е-01

Х= 40.0 У= -.3741Е-01

Х= 60.0 У= -.5507Е-01

Х= 80.0 У= -.7150Е-01

Х=100.0 У= -.8627Е-01

Х=100.0 У= -.8627Е-01

Х=120.0 У= -.9897Е-01

Х=140.0 У= -.1092Е+00

Х=160.0 У= -.1168Е+00

Х=180.0 У= -.1214Е+00

Х=200.0 У= -.1229Е+00 (ymax)

Х=220.0 У= -.1214Е+00

Х=240.0 У= -.1168Е+00

Х=260.0 У= -.1092Е+00

Х=280.0 У= -.9897Е-01

Х=300.0 У= -.8627Е-01

Х=300.0 У= -.8627Е-01

Х=320.0 У= -.7150Е-01

Х=340.0 У= -.5507Е-01

Х=360.0 У= -.3741Е-01

Х=380.0 У= -.1891Е-01

Х=400.0 У= -.1483Е-07

 Задача 9.2.1. Построить эпюру прогибов консольной балки, нагруженной сосредоточенным моментом m = 300 кг·м (рис. 4.4.6). Балка представляет собой двутавр № 10 (Iz = 198 см4; Е = 2,1·106 кг/см2) с l = 1 м.

 Решение. Используем алгоритм, примененный для составления программы для ЭВМ, рассмотренной в качестве образца (PROGRAM BEAM). Для нашего примера эта программа будет иметь вид:

 PROGRAM BEAM1 Построчные пояснения:

 5 A=100. l = 100 см

FM=30000. m = 30000 кг·см

G=2.1E6*198. G = EIz

C=0. С – произвольная постоянная

 8 D=0. D – произвольная постоянная

 9 U=5. . разбиение 1-го участка на 5 участков

X=–A/U Δx = l/u – шаг вычислений

12 X=X+A/U xi = xi-1 + Δx

IF (X–A) 15, 15, 20

15 Y=(–FM*X*X/2.+C*X+D)/G y1=(-mx2/2+Cx+D)/(EIz) – прогиб на 1-м участке

 WRITE (7, 50) X,Y

16 G0 TO 12

20 V=5. разбиение 2-го участка на 5 участков

X=A–A/V

22 X=A+A/V xi = xi-1+ Δx

IF (X–2*A) 25, 25, 60

25 Y=(–FM*X*X/2.+FM*(X–A)**2/2.+C*X+D)/G y2 = [–mx2/2+m(x–l)2/2+Cx+D]/(EIz)

WRITE (7, 50) X,Y

26 GO TO 22

50 FORMAT(2HX=, F5.1, 2HY=, E12.4)

60 STOP

END

Результаты, выдаваемые ЭВМ на печать:

X= .0 Y= .0000E+00 X=100.0 Y= -.3608E+00

X= 20.0 Y= -.1443E-01 X=120.0 Y= -.5051E+00 

X= 40.0 Y= -.5772E-01 X=140.0 Y= -.6494E+00

X= 60.0 Y= -.1299E+00 X=160.0 Y= -.7937E+00

X= 80.0 Y= -.2309E+00 X=180.0 Y= -.9380E+00

X=100.0 Y= -.3608E+00 X=200.0 Y= -.1082E+01

 В вышеприведенной программе применяются размерности: см, кг·см, кг/см2, см4.

 Задача 9.2.2. Составить программу для ЭВМ и построить эпюру прогибов однопролетной балки, показанной на рис. 4.4.7. Принять, что m = =300 кг·м, Е = 2,1·106 кг/см2, l = 1 м Балка – из двутавра № 18.

 У к а з а н и е. Уравнение упругой оси балки взять из задачи 4.4.6.

 Задача 9.2.3. Составить программу для ЭВМ и построить эпюру прогибов консольной балки, изображенной на рис. 4.4.8. Принять q = 1 кН/м, а= 1 м, b = с = 2 м. Балка изготовлена из двутавра № 18. Уравнения изогнутой оси балки для каждого участка взять из ответа к примеру 4.4.7.

 Задача 9.2.4. Составить программу для ЭВМ и построить эпюру прогибов однопролетной балки, показанной на рис. 4.1.17. Пусть F = 1 кН, l = =1м, балка изготовлена из двутавра № 20. Уравнения изогнутой оси балки для двух участков взять из ответа к примеру 4.4.8.

 Задача 9.2.5. Построить эпюру прогибов консольной балки, нагруженной сосредоточенными силами F = 1 кН. Пусть l = 1 м (рис. 4.2.4). Балка круглого поперечного сечения с d = 20 см, Е = 0,1·105 МПа (сосна). Полученные результаты сравнить с ответом в задаче 4.4.10.

 Задача 9.2.6. Построить эпюру прогибов стальной однопролетной балки из двутавра № 18, показанной на рис. 4.4.10. При составлении программы для ЭВМ использовать уравнения изогнутой оси балки, приведенные в ответе к задаче 4.4.12. Пусть l = 4 м, F = 1 кН. Имеется ли симметрия эпюры прогибов относительно оси, проходящей вертикально через сосредоточенную силу 2F?

 Задача 9.2.7. Построить эпюры прогибов и углов поворота сечений стальной балки из двутавра № 20, показанной на рис. 4.4.11, где а = 1 м, b= 0,8 м; F = 1 кН. Результаты сравнить с ответом к задаче 4.4.13.

 Задача 9.2.8. Имеется стальная балка из двутавра № 22, нагруженная сосредоточенной силой F = 30 кН (рис. 4.5.1). Удовлетворяет ли сортамент балки условию жесткости (4.5.1), если [1/n0] = 1/250? Материал балки – сталь С255.

 У к а з а н и е. Предварительно необходимо построить эпюру прогибов и определить ymax.

 Ответ: балка удовлетворяет условию жесткости (4.5.1).

Степень статической неопределимости. Методика ее определения.

Статически неопределимые системы характеризуются степенью статической неопределимости, которая равна числу «лишних» связей и может быть вычислена как разность между числом неизвестных сил и числом независимых уравнений равновесия. По числу единиц этой разности системы бывают 1,2,3….n раз статически неопределимыми.

Для расчетов составляется силовая схема заданной системы, на которой указываются все известные и неизвестные силовые факторы.

При составлении силовой схемы в случае определения внутренних силовых факторов применяется метод сечений, согласно которому каждое звено системы разделяется на две части в произвольном сечении, затем отбрасываются части, примыкающие к опорным элементам, а их действие на оставшиеся части заменяется продольными силами. После этого на схеме показываются все заданные внешние силы и реакции опор.

Затем по этой схеме устанавливается возможное число независимых уравнений равновесия. Степень статической неопределимости подсчитывается, как разность между числом неизвестных сил и числом независимых уравнений равновесия.

На рис.2.38, а изображен кронштейн, состоящий из двух стержней, шарнирно скрепленных между собой. В связи с тем, что на конструкцию действует лишь вертикальное усилие Р, а система является плоской (т.е. все элементы конструкции и вектор внешних сил лежат в одной плоскости), получается, что усилия в стержнях легко определяются из условий равновесия узла , т.е.

, .                              (2.37)

Раскрывая эти уравнения, получаем замкнутую систему линейных уравнений относительно неизвестных усилий N1 и N2 в которой количество уравнений равно количеству неизвестных:

; .

Если конструкцию кронштейна усложнить, добавив еще один стержень (рис.2.38, б), то усилия в стержнях N1, N2 и N3 прежним способом определить уже не удастся, т.к. при тех же двух уравнениях равновесия (2.37) имеются уже три неизвестных усилия в стержнях. В таких случаях говорят, что система один раз статически неопределима.

Рис.2.38

На рис.2.39 приведены примеры статически неопределимых систем. В стержне с жестко заделанными концами (рис.4.2, а) возникают две реакции, а уравнение равновесия можно составить только одно, следовательно, конструкция один раз статически неопределима. Не нарушая равновесия стержня, можно отбросить одну из опор.

Ocr0313

Рис.2.39

Для системы из трех стержней (рис.2.39, б) можно составить два уравнения равновесия, а неизвестных сил в системе три, следовательно, система один раз статически неопределима. Один из стержней не нужен для равновесия системы, и его можно отбросить. Рассуждая аналогично, можно установить, что система из четырех стержней (рис.2.39, в) дважды статически неопределима.


Расчеты на растяжение и сжатие