Задачи по сопротивлению материалов Геометрические характеристики плоских сечений Лабораторные работы по сопротивлению материалов Контрольная работа Определение перемещений при косом изгибе Расчет заклепок на срез

Сопромат Задачи и лабораторные работы

Построение эпюр нормальных сил и напряжений для брусьев в статически определимых задачах

Задача 1.1.1. Построить эпюры нормальных сил и нормальных напряжений для бруса, изображенного на рис. 1.1.1. Собственный вес бруса в расчете не учитывать.

Решение. Для определения внутренних усилий разбиваем прямолинейный брус на участки. Границами участков являются точки продольной оси, соответствующие изменению площади поперечного сечения и точкам приложения сосредоточенных сил. Из рассмотрения рис. 1.1.1, а определяем, что брус необходимо разбить на четыре участка.

Проводим сечение I – I. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой N1 (рис. 1.1.1, б). Запишем уравнение равновесия, проектируя силы на ось бруса:

откуда N1 = F.

Очевидно, что на всем первом участке () нормальная сила N1 постоянна по величине. Откладываем в масштабе значение нормальной силы N1 = F в пределах участка I – I (рис. 1.1.1, е).

Проводим сечение II – II и, отбрасывая верхнюю часть бруса, заменяем ее действие нормальной силой N2 (рис. 1.1.1, в). Проектируем все силы на ось бруса:

откуда N2 = –F.

Рис. 1.1.1

Аналогично находим нормальные силы в сечении III – III (рис. 1.1.1, г):

откуда N3 = –F

и в сечении IV – IV (рис. 1.1.1, д):

откуда N4 = 0.

Откладывая в масштабе значения нормальных сил N2, N3, N4 в пределах соответствующих участков, получаем эпюру нормальных сил (рис.1.1.1,е). Полученную таким путем эпюру принято штриховать прямыми линиями, перпендикулярными к оси бруса. Каждая такая линия в принятом масштабе дает величину нормальной силы в соответствующем поперечном сечении бруса. Знак «плюс» показывает, что в пределах данного участка – растяжение, а знак «минус» – сжатие.

Для построения эпюры нормальных напряжений воспользуемся формулой (1.2) для каждого участка:

Эпюра нормальных напряжений (рис. 1.1.1, ж) показывает, что наибольшего значения нормальные напряжения достигают в пределах третьего участка (участок III).

Задача 1.1.2. Построить эпюры нормальных сил и нормальных напряжений для бруса, изображенного на рис.1.1.2, а. Принять a = 0,4 м; площадь поперечного сечения бруса на участках III и IV А = 20 см2; сосредоточенная сила F = 0,5 кН, собственный вес = 0,0078 кг/см3 = 76,44 кН/м3.

Решение. Для определения внутренних усилий разбиваем брус с прямолинейной осью на четыре участка. Проводим сечение I – I (рис. 1.1.2, а) и отбрасываем верхнюю часть бруса, заменяя действие отброшенной части нормальной силой N1 (рис. 1.1.2, б). Так как сечение I –I может быть проведено в любом месте участка I, то длина оставшейся части участка будет переменной величиной, и поэтому обозначим ее через x (рис. 1.1.2, б), причем . Запишем уравнение равновесия, проектируя силы, действующие на оставшуюся часть бруса, на направление оси бруса:


откуда

Подпись: жПодпись: еПодпись: дПодпись: гПодпись: вПодпись: бПодпись: аРис. 1.1.2

Через обозначен собственный вес оставшейся части бруса первого участка, в пределах которого площадь поперечного сечения равна 2А, а длина оставшейся части обозначена через x. Подставим численные значения в полученную формулу:

.

Записанное выражение показывает, что эпюра нормальных сил в пределах первого участка представляет собой наклонную прямую линию. Для построения этой прямой определим значение нормальной силы N1 в начале первого участка (x = 0): N1(x = 0) = 500 Н и в конце первого участка (x = a= = 0,5 м): N1 (х = 0,5 м) =

Полученные значения откладываем в масштабе в соответствующих точках эпюры нормальных сил (рис. 1.1.2, е). Найденные точки соединяем прямой линией, затем штрихуем первый участок эпюры прямыми линиями, перпендикулярными к оси бруса.

Проводим сечение II – II и повторяем порядок расчета, описанный выше для сечения I – I. Переменная величина х участка II – II будет изменяться в пределах . Составим уравнение равновесия (рис. 1.1.2, в)

откуда

где – собственный вес части бруса, расположенного ниже сечения II – II. Окончательно имеем

Определяем значение нормальной силы N2 в начале второго участка (х= 0,5 м): и в конце этого же участка (х = хmax = 1 м):

Полученные значения N2 откладываем в масштабе в начале и в конце второго участка (рис. 1.1.2, е).

Проводим сечение III – III и для оставшейся части бруса составляем уравнение равновесия (рис. 1.1.2, г)

откуда где – собственный вес оставшейся части бруса третьего участка; – собственный вес первого и второго участков.

Тогда для участка

где нормальная сила N3 в начале третьего участка будет N3(х=0) = –194,2 Н; а в конце третьего участка получаем N3 (х = a = 0,5 м) = –117,8 Н. Найденные значения N3 переносим на эпюру нормальных сил.

И наконец, рассматривая равновесие оставшейся части бруса, после проведения сечения IV – IV получаем (рис. 1.1.2, д)

откуда где = 305,76 Н – собственный вес участков I – I и II – II, 152,88х – собственный вес третьего и оставшейся части четвертого участков.

В этом случае имеем

т.е. в начале четвертого участка N4 (х = 0,5 м) = 382,2 Н, а в конце этого же участка N4 (х = 1 м) = 458,64 Н. Вычисленные значения N4 откладываем в масштабе на эпюре нормальных сил (рис. 1.1.2, е).

Эпюра нормальных сил показывает, что первый и четвертый участок подвержены растяжению, а второй и третий – сжатию.

Для вычисления значений нормальных напряжений и построения эпюры нормальных напряжений используем формулу (1.2):

Эпюра нормальных напряжений показывает, что самое большое нормальное напряжение возникает в сечении, проходящем через точку Л четвертого участка (рис. 1.1.2, ж), т.е. на опоре.

В брусе сечение проводят перпендикулярно его оси. Такое сечение называют поперечным.

Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия.

Рассмотрим тело, имеющее форму бруса (рис. 1.4, а).

Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3,..., Рn , удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия.

Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.4, б).

Рис. 1.4

Обозначая через и суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что

                      (1.1)

для отсеченных частей бруса получим следующие очевидные соотношения:

; .           (1.2)

Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом суть метода сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций.


Расчеты на растяжение и сжатие