Задачи по сопротивлению материалов Геометрические характеристики плоских сечений Лабораторные работы по сопротивлению материалов Контрольная работа Определение перемещений при косом изгибе Расчет заклепок на срез

Сопромат Задачи и лабораторные работы

Эпюры главных напряжений при изгибе

 В каждой точке напряженного тела существуют три взаимно перпендикулярные площадки, на которых касательные напряжения равны нулю. Такие площадки называются главными площадками, а нормальные напряжения на них – главными напряжениями. В порядке возрастания эти напряжения обозначаются через , , ().

 В случае плоского поперечного изгиба = 0, а главные напряжения вычисляются по формуле

  (4.3.1)

 Максимальное касательное напряжение возникает в площадках, наклоненных под углом 45о к главным площадкам. Максимальное касательное напряжение определяют по формуле

  (4.3.2)

 Угол  между главной площадкой и поперечным сечением перпендикулярным оси балки можно найти из выражения

  (4.3.3)

 Задача 4.3.1. Построить эпюры главных напряжений, и эпюру максимальных касательных напряжений в наиболее опасном с точки зрения главных напряжений поперечном сечении балки, изображенной на рис. 4.1.16. При расчете принять q = 10 кН/м, l = 6 м, материал балки – сталь с Ry = 240 МПа, = 1.

 Решение. Из эпюр изгибающего момента М и поперечных сил Q очевидно, что наиболее опасное поперечное сечение на опоре (в заделке), где Mz,max = 2ql2 = 720 кН·м, Qmax = 2ql = 120 кН. Подберем сечение в виде прокатного двутаврового профиля, для чего из формулы (4.2.7) находим

 Принимаем двутавр № 70Б1 (Wz = 3645 см3, Iz = 125930 см4) – двутавр стальной горячекатанный с параллельными гранями полок пo ГОСТ 26020-83. Поперечное сечение с соответствующими размерами показано на рис. 4.3.1. Кроме того, из таблицы выписываем площадь поперечного сечения А = 164,7 см2, статический момент половины поперечного сечения  = 2095 см3.

 Построим эпюру нормальных напряжений , для чего определяем

 Полученные данные занесем в табл. 4.3.1.

 Определяем статические моменты (относительно оси z) части площади, расположенной выше продольного сечения, проходящего через соответствующие точки. Например,  части площади, расположенной выше продольного сечения, проходящего через точку 2, находим по формуле

 а затем определяем касательное напряжение  по формуле (4.2.6) при условии, что  распределены по ширине поперечного сечения равномерно:

 Далее находим , а затем и касательное напряжение

Таблица 4.3.1

точек

yi

см

МПа

см3

МПа

МПа

МПа

МПа

1

34,55

198

0

0

99

198

0

2

33

188,7

1361

0,5

94,37

188,72

–0,02

3

33

188,7

1361

10,8

95

189,35

–0,65

4

0

0

2095

16,6

16,6

16,6

–16,6

5

–33

–188,7

1361

10,8

95

0,65

–189,35

6

–33

–188,7

1361

0,5

94,37

0,02

–188,72

7

–34,55

–198

0

0

99

0

–198

 Статический момент можно вычислить по рис. 4.3.1 или взять из табл. III, б раздела IV «Приложения»: = 2095 см3, а затем найти  (см. табл. 4.3.1). Определив для каждой точки поперечного сечения  и , находим значения  по формуле (4.3.2) для соответствующей точки поперечного сечения, например,

 

 

 И наконец, приступаем к определению главных напряжений   и  по формуле (4.3.1):

 

и далее, используя данные табл. 4.3.1, вычисляем

 ;

и т.д. Полученные результаты заносим в табл. 4.3.1. На рис. 4.3.1 показаны эпюры главных напряжений , и эпюра .

 Задача 4.3.2. Построить эпюры главных напряжений , и эпюру максимальных касательных напряжений  в наиболее опасном с точки зрения главных напряжений прямоугольном поперечном сечении балки, изображенной на рис. 4.2.3. При расчете принять l = 4 м, F = 40 кН, b = 5 см, h = 15 см. Материал балки – сталь с Ry = 240 МПа.

 Ответ:

 

 Задача 4.3.3. Построить эпюры главных напряжений , и эпюру максимальных касательных напряжений  в наиболее опасном с точки зрения главных напряжений круглом поперечном сечении консольной балки, изображенной на рис. 4.2.4. При расчете принять l = 2 м, сосредоточенные силы F = 5 кН, диаметр балки d = 12 см. Материал балки – сталь с Ry = 240 МПа,  (рис. 4.3.2).


Ответ:

 Задача 4.3.4. Построить эпюры главных напряжений и максимальных касательных напряжений в наиболее опасном треугольном поперечном сечении (рис. 4.3.3) балки с М = 40 кН·м, Q = 40 кН. Принять без вывода, что

 Записать в аналитической форме выражение для , а затем вычислить,, в точках с y = 2h/3, y = h/6, y = 0, y = –h/3.


Задача 4.3.5. Построить эпюры главных напряжений , и эпюру максимальных касательных напряжений  в наиболее опасном поперечном сечении (рис. 4.3.4) балки, изображенной на рис. 4.1.17. При расчете принять l = 2 м, F = 90 кН, Ry = 240 МПа,. Поперечное сечение представляет собой двутавр № 40Б1 стальной горячекатанный с параллельными гранями полок по ГОСТ 26020-83. Основные размеры показаны на рис. 4.3.4, кроме того, имеем Wz = 803,6 см3; Iz = 15750 см4;  = =456 см3. При расчете использовать методику, изложенную в задаче 4.3.1.

 Задача 4.3.6. Построить эпюры главных напряжений , и эпюру максимальных касательных напряжений  в наиболее опасном поперечном сечении с точки зрения главных напряжений. В балке, изображенной на рис. 4.3.5, это – поперечное сечение с МC = 10 кН·м, QC = 30 кН. Однако поперечное сечение балки следует подбирать по Мmax = 12,5 кН·м. Материал балки – сталь с Ry = 240 МПа,  следовательно, Wz,min = 12500/240 = 52 см3. Принимаем балку из двутавра № 12 с Wz = 58,4 см3 по ГОСТ 8239-89 (таблица III, а, раздела IV «Приложения)». Далее при построении эпюр , ,  рекомендуется использовать методику, изложенную в задаче 4.3.1.

Допущения, применяемые в сопротивлении материалов

Для построения теории сопротивления материалов принимают некоторые допущения относительно структуры и свойств материалов, а также о характере деформаций. Приведем основные из них.

1. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее, указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.

С понятием однородности тесно связано понятие сплошности среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит в теле конструкции нет пустот. Это допущение позволяет использовать в сопротивлении материалов методы математического анализа (дифференциальное и интегральное исчисления).

2. Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Материалы, имеющие различные свойства в разных направлениях, называют анизотропными (например, дерево). Отдельно взятый кристалл материала анизотропен, но т.к. в объеме реального тела содержится бесконечно большое количество хаотично расположенных кристаллов, принимается, что материал изотропен.

Металлы и сплавы, как правило, изотропны. В настоящее время широкое распространение получили анизотропные композиционные материалы, состоящие из двух компонентов – наполнителя и связующего. Наполнитель состоит из уложенных в определенном порядке высокопрочных нитей – матрицы, что и определяет значительную анизотропию композита. Композиционные материалы имеют высокую прочность при значительно меньшем, чем металлы весе.

3. Принимается, что до определенной величины деформации материалов подчиняются закону Гука и весьма малы относительно размеров тела, поэтому все расчеты выполняются по исходной, т.е. недеформированной, схеме, к которой применим принцип независимости действия сил.

4. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью. При решении большинства задач в сопротивлении материалов принимается, что материал конструкций абсолютно упругий. Это допущение справедливо, пока нагрузки не превышают определенного значения. При больших нагрузках в элементах конструкций появляются пластические деформации.

5. Перемещения, возникающие под действием внешних сил в упругом теле, малы по сравнению с его размерами. Это допущение называется принципом начальных размеров. Допущение позволяет при составлении уравнений равновесия пренебречь изменениями формы и размеров конструкции.

6. Предполагается, что в сечениях, достаточно удаленных от мест приложения нагрузки, характер распределения напряжений не зависит от конкретного способа нагружения. Основанием для такого утверждения служит принцип Сен-Венана, справедливый для любого типа напряженного состояния и формулируемый следующим образом: особенности приложения внешних нагрузок проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня. Принцип Сен-Венана подробно рассмотрен в части 2.

7. Принимается гипотеза плоских сечений (гипотеза Бернулли), введенной швейцарским ученым Д. Бернулли, гласящей, что плоские поперечные сечения стержня до деформации остаются плоскими и после деформации.

8. Считается, что ненагруженное тело свободно от каких бы то ни было внутренних сил любой природы.


Расчеты на растяжение и сжатие