Геометрические характеристики плоских сечений

Начертательная геометрия
и инженерная графика
Начертательная геометрия
Задание по инженерной графике
Геометрические характеристики
плоских сечений
Построение геометрических фигур
Контрольная работа по
инженерной графике
Практикум по черчению
Оформление чертежей
Построения черчежа
Позиционные задачи

Основы машиностроительного черчения

Черчение Практикум по решению задач
Построение касательной
История искусства
Архитектура и скульптура Западной Европы
Живопись Франции
Барбизонская школа
Эдуард Мане
Импрессионизм
Неоимпрессионизм
Постимпрессионизм
Живопись Германии
Живопись Англии
Галерея Тейт в Лондоне
Искусство России
Архитектура и скульптура
Живопись
Иван Айвазовский
Василий Поленов
Василий Суриков
Исаак Левитан

Государственная Третьяковская галерея

Сопромат
Сопротивление материалов
Задачи по сопротивлению материалов
Теоретическая механика
Лабораторные работы по
сопротивлению материалов
Контрольная работа по сопромату
Лекции по черчению,
начертательной геометрии
Вычерчивание контуров деталей
Аксонометрическая проекция
Тени цилиндра
Конические сечения
Математика решение задач
Вычисление объемов с помощью
тройных интегралов
Основы векторной алгебры
Аналитическая геометрия
Решение типового варианта контрольной работы
Курсовая по математике
Вычисления интегралов
Интегралы при решении задач
Физика
Лекции и конспекты
Физика примеры решения задач
Механика
Термодинамика
Молекулярная физика
Электростатика и постоянный ток
Электромагнетизм
Электромагнитная индукция
Теория электромагнитного поля
Геометрическая оптика
Радиоактивность. Элементы физики ядра
Электротехника
Схемы выпрямителей, фильтров
MATLAB приложение Simulink
Курсовая по ТОЭ
Примеры выполнения заданий
Курс лекций по ТОЭ и типовые задания
Линейные электрические цепи
Резонанс в электрических цепях
Несинусоидальные токи
Расчет переходных процессов
Теория нелинейных цепей
Переходные процессы в нелинейных цепях
Лабораторные работы и расчеты по ТОЭ
Исследование переходных процессов
Моделирование электрических цепей
Задание на курсовую работу
Расчет переходного процесса в цепях
первого порядка
Использование программы Mathcad
Исследование  трёхфазных цепей
Исследование сложной электрической цепи постоянного тока
Исследование  трёхфазных цепей при соединении сопротивлений нагрузки
в треугольник
Информатика
Школьный учебник по информатике
Графический пакет AutoCAD
Adobe Illustrator
Инструменты
Векторные фильтры
Цветовые фильтры
Работа с текстом и шрифтом
Информационная графика
Учебник по Microsoft Internet Explorer
Основы безопасной работы с ресурсами сети
Microsoft Outlook
Компьютерные сети
Вычислительные сети
Основные проблемы построения сетей
Понятие «открытая система» и проблемы стандартизации
Локальные и глобальные сети
Сети отделов, кампусов и корпораций
Требования, предъявляемые к современным вычислительным сетям
Основы передачи дискретных данных
Методы передачи дискретных данных на физическом уровне
Методы передачи данных канального уровня
Методы коммутации
Базовые технологии локальных сетей
Протокол LLC уровня управления логическим каналом (802.2)
Технология Ethernet (802.3)
Технология Token Ring (802.5)
Технология FDDI
Fast Ethernet и 100VG - AnyLAN как развитие технологии Ethernet
Высокоскоростная технология Gigabit Ethernet
Построение локальных сетей по стандартам физического и канального уровней
Концентраторы и сетевые адаптеры
Логическая структуризация сети с помощью мостов и коммутаторов
Техническая реализация и дополнительные функции коммутаторов
Сетевой уровень как средство построения больших сетей
Адресация в IP-сетях
Протокол IP
Протоколы маршрутизации в IP-сетях
Средства построения составных сетей стека Novell
Маршрутизаторы
Глобальные сети
Глобальные связи на основе выделенных линий
Глобальные связи на основе сетей с коммутацией каналов
Компьютерные глобальные сети с коммутацией пакетов
Удаленный доступ
Средства анализа и управления сетями
Мониторинг и анализ локальных сетей
Ядерная индустрия
История ядерной индустрии
Урановый проект
Попытка создать атомное оружие в Германии
США применила атомные бомбы
Атомная индустрия в Великобритании
Проектирование ядерного реактора Франция
Развитие ядерной индустрии в СССР
Урановый проект СССР в годы войны
Проектирование атомной подводной лодки
Первая в мире атомная электростанция
Атомный ледоход"Ленин"
Путешествие советской атомной подводной лодки на Северный полюс
Атомные двигатели для космоса
Курчатовский институт
Ядерные реакторы
Компоновка реакторного контура
Реактор ВВЭР
Реактор РБМК
Реакторная установка МКЭР -1500
Газоохлаждаемые реакторы
Атомные электростанции с натриевым теплоносителем
АЭС с реактором БН-350
Цепная ядерная реакция
Термоядерный синтез
Реакторы на быстрых нейтронах
Варианты  плавучего энергоблока и опреснительных установок
Радиационная и ядерная безопасность
Обеспечение защиты населения
 

 Геометрическими характеристиками плоских сечений являются площадь, статические моменты плоских сечений, положение центра тяжести, моменты инерции и моменты сопротивления. Статические моменты сечений и определение центра тяжести плоских сечений

Осевые моменты инерции плоских сечений простой формы Задача. Определить полярный момент инерции круглого поперечного сечения относительно точки С.

Осевые моменты инерции плоских составных сечений Для сложных составных поперечных сечений, не содержащих осей симметрии, предлагается следующий порядок расчета.

 Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса (рис.3.1.1) под действием касательных напряжений τ. Развитие этой деформации приводит к разрушению, называемому срезом или, применительно к древесине, скалыванием.

Дополнительные задачи на сдвиг Задачи на сдвиг встречаются не только при расчете заклепочных и болтовых соединений. Имеются и другие элементы конструкций, испытывающие деформацию сдвига, и поэтому при их расчете необходимо всякий раз удовлетворять условию прочности на срез

Расчет напряжений и деформаций валов

Расчеты на прочность и жесткость валов круглого и кольцевого сечений При расчете валов требуют, чтобы они удовлетворяли условиям прочности и жесткости.

Статически неопределимые задачи на кручение

Как известно, статически неопределимыми называют задачи, в которых число неизвестных опорных реакций или число внутренних усилий превышает число возможных уравнений статики. Один из методов решения статически неопределимых задач сводится к следующему:

а) составляются все возможные в данной задаче уравнения статики;

б) представляется картина деформации, происходящей в данной конструкции, и записываются деформационные уравнения, число которых должно быть равно степени статической неопределимости задачи;

в) решается совместная система уравнений статики и деформационных уравнений.

Расчет винтовых пружин с малым шагом Приведем основные сведения по элементарной теории расчета на прочность и жесткость витых цилиндрических пружин с постоянным и малым шагом витка l, при котором угол наклона витка к горизонту мал

ПЛОСКИЙ ПОПЕРЕЧНЫЙ ИЗГИБ Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса. Изгиб называют чистым, если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении бруса (балки). Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы. Если плоскость действия изгибающего момента проходит через одну из главных центральных осей поперечного сечения, то изгиб носит название плоского или прямого.

Эпюры главных напряжений при изгибе В каждой точке напряженного тела существуют три взаимно перпендикулярные площадки, на которых касательные напряжения равны нулю.

Дифференциальное уравнение изгиба балок

Расчет балок на жесткость

Определение перемещений при помощи интеграла Мора

Простейшие статически неопределимые балки Статически неопределимой балкой называется такая балка, для определения опорных реакций которой недостаточно одних только уравнений равновесия.

Сварная балка

Сложным сопротивлением называют различные комбинации простых сопротивлений бруса – растяжения или сжатия, сдвига, кручения и изгиба. При этом на основании известного принципа независимости действия сил напряжения и деформации при сложном сопротивлении определяют суммированием напряжений и деформаций, вызванных каждым внутренним усилием, взятым в отдельности.

Внецентренное растяжение и сжатие бруса большой жесткости. Ядро сечения Жестким брусом называют брус, у которого прогибы малы по сравнению с размерами сечений и этими прогибами можно в расчете пренебречь. Внецентренное растяжение или сжатие возникает при приложении к брусу продольной силы с некоторым эксцентриситетом относительно центра тяжести поперечного сечения

Совместное действие изгиба и кручения Для выявления опасного сечения при совместном действии изгиба и кручения строятся эпюры крутящих и изгибающих моментов по правилам  глав 3 и 4. Вопрос о прочности стержня в этом случае решается с помощью тех или иных критериев прочности.

Расчет кривых брусьев малой кривизны Если отношение высоты h кривого бруса к его радиусу кривизны Ro существенно меньше единицы (h/Ro < 0,2 ), то считается, что брус имеет малую кривизну. Расчетные формулы, выведенные ранее для прямого бруса, применимы и к брусу малой кривизны.

УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ Наименьшее значение сжимающей силы, при котором сжатый стержень теряет способность сохранять прямолинейную форму равновесия, называется критической силой и обозначается Fcr.

Практические расчеты стержней на устойчивость

Расчет на устойчивость систем с одной или двумя степенями свободы при помощи уравнений равновесия

ДЕЙСТВИЕ ДИНАМИЧЕСКИХ НАГРУЗОК Динамической считается такая нагрузка, положение, направление и интенсивность которой зависят от времени, так что необходимо учитывать силы инерции тела в результате ее действия. При этом конструкции или их элементы совершают движения, простейшим видом которых являются колебания. Из различных задач динамики конструкций здесь рассматриваются задачи на действие инерционных и ударных нагрузок, а также задачи на упругие свободные колебания систем с одной степенью свободы.

Упругие колебания систем с одной степенью свободы Упругими колебаниями называют движения упругих тел, представляющие собой периодические отклонения их относительно положения равновесия.

НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ В предыдущих главах использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной точке не превосходило допускаемого напряжения (расчетного сопротивления).

Предельная нагрузка для балок Напряженное состояние изгибаемых конструкций (балок) определяется величинами изгибающих моментов.

Предельная нагрузка при кручении Предельным состоянием для идеально пластического материала будет такое, при котором касательные напряжения во всех точках поперечного сечения станут равными пределу текучести

Пример.

Построить эпюру распределения касательных напряжений для балки двутаврового (№ 12) сечения (рис. 6.30), если Q=10 кН.

Рис. 6.30

Для построения эпюры схематизируем действительное сечение, представив его в виде трех прямоугольников, как показано на рис. 6.30 пунктиром. Проведя произвольную линию mn, параллельную нулевой линии, и перемещая ее вдоль оси y, обнаруживаем, что при этом напряжения в точках этой линии меняются по параболическому закону, так как мы имеем дело с прямоугольниками. Для построения эпюры касательных напряжений вычислим τ в крайних волокнах (линия AB), в месте сопряжения полки со стенкой (точки 1 и 2, причем будем считать, что они расположены бесконечно близко к границам полки, но лежат по разные стороны от этой границы) и в точках нейтральной линии.

На рис. 6.30 все размеры даны в мм, а напряжения – в МПа.

Для точек линии AB ширина сечения равна l, а статический момент равен нулю, так как линия AB не отсекает никакой площади. Таким в точках линии AB касательные напряжения равны нулю.

Для точки 1 статический момент равен

Момент инерции сечения относительно нейтральной оси находим по сортаменту Iz=403 см4. Касательное напряжение в точке 1:

Для точки 2 статический момент (с точностью до бесконечно малых величин) остается таким же, но ширина сечения d=0,5 см. Поэтому касательное напряжение в точке 2

Для точек

Следовательно, при переходе от точки 1 к точке 2 касательное напряжение возрастает в 15 раз и на эпюре получается скачок.

Для точек нейтральной линии ширина сечения d=0,5 см, а статический момент следует взять для половины сечения из сортамента Szmax=38,5 см3. Поэтому

На основании этих данных строим эпюру касательных напряжений для нижней половины сечения. Для верхней половины сечения в силу симметрии профиля относительно оси z эпюра будет симметричной.

Построенная эпюра условна, так как она дает верные значения касательных напряжений только для точек стенки, достаточно удаленных от полок. Вблизи полок касательные напряжения в стенке возрастают, ввиду того, что место сопряжения полки со стенкой является источником концентрации касательных напряжений. В полках же, где отношение высоты к ширине много меньше единицы, возникают касательные напряжения, перпендикулярные направлению Q, и величина их меняется по ширине сечения.

Необходимо отметить также, что формулой Журавского можно пользоваться только в случае прямого изгиба.

При изгибе тонкостенных профилей касательные напряжения определяются по следующей формуле:

где - толщина тонкостенного профиля.

На рис. 6.31 построена эпюра при изгибе тонкостенного двутавра в вертикальной плоскости симметрии. Вследствие симметрии сечения и нагрузки, касательные напряжения в симметричных точках полок двутавра должны быть также симметричны относительно оси y и будут увеличиваться от края к центру по линейному закону:

.

Вдоль стенки τ изменяются по параболическому закону

и направлены в ту же сторону, что и сила Q.

Рис. 6.31

Рис. 6.32

При изгибе двутавра в плоскости второй оси (рис. 6.32) касательные напряжения в стенке равны нулю, а вдоль каждой из полок изменяются по параболическому закону

.

Требования, предъявляемые к современным вычислительным сетям