Задачи по сопротивлению материалов

Лекции
Физика

Контрольная

На главную
Электротехника

В сопротивлении материалов рассматриваются вопросы расчета отдельных элементов конструкций на прочность, жесткость и устойчивость. В настоящем разделе собраны типичные задачи по различным видам простого и сложного сопротивления отдельного бруса.

Построение эпюр нормальных сил и напряжений для брусьев в статически определимых задачах Задача Построить эпюры нормальных сил и нормальных напряжений для бруса, изображенного на рис. 1.1.1. Собственный вес бруса в расчете не учитывать.

Задача Построить эпюры нормальных сил и нормальных напряжений для бруса постоянного поперечного сечения с А = 10 см2. На брус действует внешняя распределенная осевая нагрузка q = 5 кН/м и продольные сосредоточенные силы F= 15 кН

Перемещения поперечных сечений брусьев в статически определимых задачах Задача Определить перемещение нижнего конца стержня, изображенного на рис. 1.1.1, а. Задачу решить без учета собственного веса материала бруса.

Расчеты на растяжение и сжатие статически определимых стержневых систем Задача Абсолютно жесткий брус ВС (ЕВС = ) прикреплен в точке С к неподвижному шарниру, а в точке В поддерживается стальной тягой АВ. В точке В приложена вертикальная сила F = 20 кН.

Построение эпюр нормальных сил и напряжений для брусьев в статически неопределимых задачах Статически неопределимыми системами называются системы, для которых реакции связей и внутренние усилия не могут быть определены только из уравнений равновесия. Поэтому при их расчете необходимо составлять дополнительные уравнения перемещений, учитывающие характер деформации системы. Число дополнительных уравнений, необходимых для расчета системы, характеризует степень ее статической неопределимости.

Расчеты на растяжение и сжатие статически неопределимых стержневых систем Задача (Пример взят из учебника А.В. Даркова, Г.С. Шпиро «Сопротивление материалов». – М.: «Высшая школа», 1975. – Изд.4-е. – 656с.). Дана статически неопределимая плоская шарнирно - стержневая система, состоящая из абсолютно жесткого бруса, опертого на шарнирную опору и прикрепленного к двум стержням ВВ1 и СС1 при помощи шарниров.

Пример.

Для заданных двух схем балок (рис.6.39) требуется написать выражения , для каждого участка в общем виде, построить эпюры , , найти и подобрать: для схемы а) деревянную балку круглого поперечного сечения при МПа; для схемы б) стальную балку двутаврового поперечного сечения при МПа. При М = 20 кН/м, Р = 20 кН, q = 8 кН/м, м, м, , , .

а) б)

Рис.6.39

Решение.

а) б)

Рис.6.40

Схема а).

1. Для определения внутренних усилий , используем метод сечений. Определим количество участков: граничными точками участков являются точки приложения сосредоточенных сил и моментов, а также точки начала и конца распределенной нагрузки. В данной задаче консольная балка имеет два участка. Рассечем последовательно со свободного конца каждый из них. Отбрасывая часть балки, включавшую защемление, определим внутренние силовые факторы в сечении. Поперечная сила равна алгебраической сумме проекций сил, приложенных к отсеченной части на поперечную ось (ось у), изгибаюший момент равен алгебраической сумме моментов, возникающих на отсеченной части относительно оси х в сечении. При определении знаков, используем следующее правило: поперечная сила положительна, если отсеченная часть стремится повернуться по часовой стрелке относительно, точки сечения, изгибающий момент положителен, если балка становится вогнутой.

Запишем выражения для внутренних силовых факторов и сосчитаем их значения в граничных точках участков (рис.6.40,а).

1 участок: м

кН;

.

, кН;

, кНм.

II участок: м

;

,

кН, кН;

кНм, кНм.

2. Построим эпюры внутренних силовых факторов, откладывая вычисленные значения на графике (рис.6.40,а). Соединим полученные точки прямыми линиями на участках, где аргумент z входит в первой степени и параболами, где z входит во второй степени. Таким образом, эпюра изгибающего момента на первом участке будет криволинейной, остальные участки эпюр будут прямолинейными. Определим опасное сечение балки, т.е. сечение, в котором изгибающий момент достигает наибольшего по модулю значения. Опасным сечением будет сечение на опоре, где кН/м.

3. Диаметр круглого сечения найдем из условия прочности

,

, ,

м.

Схема б).

1. Для балки, лежащей на двух шарнирных опорах (рис.6.40,б), найдем опорные реакции RА, НА, RВ . Запишем уравнения равновесия статики:

;

;

.

;

.

Для проверки правильности определения реакций запишем еще одно уравнение равновесия, которое должно тождественно удовлетвориться при правильно найденных значениях реакций.

,

.

Балка имеет три участка, рассечем каждый из них.

I участок:

кН;

.

, кН;

, кНм.

II участок: м

;

,

кН, кН;

, кНм.

2. Построим эпюры, соединяя полученные значения и . На втором участке эпюра имеет максимум при . Для определения величины максимального момента приравняем нулю выражение поперечной силы на участке, определим величину и подставим ее в выражение изгибающего момента:

,

м,

кНм.

Двутавровое сечение найдем из условия прочности, определив необходимую величину момента сопротивления

,

.

Из сортамента прокатной стали (ГОСТ 8239-72) выберем двутавр с см3,

, см3.

Ядерные реакторы

Сети